
XCompatibility Checker: a tool for detecting
cross-browser incompatibilities

(alphabetically)

Arthur Marques, Mohammad Bajammal, Rodrigo Araújo
University of British Columbia

Vancouver, Canada
{msarthur, rodarauj}@cs.ubc.ca

{bajammal}@ece.ubc.ca

ABSTRACT
Web browsers are built by different organizations and writ-
ing software that runs smoothly on all existing browsers is
a challenging task. Due to the pace that browsers imple-
ment or adopt certain web features, users’ experience may
be hindered by visual and functional incompatibilities due
to unsupported or non-standard features in a given browser.
In order to address the detection of cross-browser incom-
patibilities in early stages of web development, we propose
XCompatibility-Checker a lightweight tool that automates
the identification of features that are not supported by dif-
ferent browsers. The tool’s evaluation was twofold (i) it
was able to detect cross-browser incompatibilities in 38 open
source web applications; as well as (ii) a user study and qual-
itative survey indicates that the tool improves developers’
awareness and ability to detect cross-browser incompatibil-
ities. Therefore, our proposed tool helps web developers
improve the quality of their web applications.

Keywords
cross-browser compatibility; recommendation system; IDE
tool

1. INTRODUCTION
Web applications are used in many applications and across

various devices and platforms. Such platforms include high-
resolution desktop computers, laptops and netbooks, tablets,
mobile phones, televisions, among others. Fortunately, the
differences between these devices are partially taken care of
by web browsers, therefore enabling web application devel-
opers to more or less run the same application across many
end-user devices.

However, web browsers are developed by different organi-
zations with differing priorities and speeds of adopting web
development features. While the World Wide Web Consor-
tium (W3C) was formed to standardize web technologies,

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Copyright 20XX ACM X-XXXXX-XX-X/XX/XX

the adoption and implementation of standards is not uni-
form and consistent across browsers. As a result, not all
web browsers adhere to the same standards, and different
versions of various browser may or may not adopt features.
Therefore, inconsistencies between different browsers, ver-
sions, and platforms may compromise user’s experience [5].

In this project, we present the XCompatibility Checker
tool. It aids developers in detecting defects related to web
standards conformity. The tool exposes an API that inspects
the source code of a web application and reports, non-stan-
dard compliant features in the code as well as an overall
browser compatibility score for that application. Instead of
deferring examining browser compatibility to a later stage
after code development, the proposed tool shows compatibil-
ity defects in real-time during development and therefore al-
lowing immediate repair of defects on the go. Furthermore,
the proposed tool shows compatibility information for all
major browsers on the spot, instead of requiring developers
or testers to open the web application in multiple browsers
and platforms and manually test them one at a time.

In order to evaluate our proposed tool, we used it to as-
sess the overall cross-browser compatibility score of 38 open
source systems. Our findings indicate that XCompatibility-
Checker is able to identify compatibility issues on 60% of the
evaluated projects. Additionally, a qualitative study verified
that the tool does improve developers’ awareness of cross-
browser incompatibilities. Participants feedback state that
the tool supports the early identification of incompatibilities,
which could pass undetected without such tool support.

The major contributions of this paper are summarized as
follows:

1. A command-line and IDE tool that can detect and
report cross-browser incompatibilities;

2. An empirical evaluation of cross-browser incompatibil-
ities on 38 open source systems;

3. An empirical evaluation on how developers awareness
is affected by tools that detect cross-browser incom-
patibilities.

The remainder of the paper is structured as follows. Sec-
tion 2 provides a motivating example of some of the issues
related to cross-browser compatibility. Section 3 discusses
related work and their limitations. Section 4 details our pro-
posed approach and its implementation as a tool. Section 5
describes the methodology used to evaluate our tool, and
Section 6 discusses evaluation’s results. Section 7 discusses

the threats to the validity of our experiment. Section 8
presents of final remarks and future work.

2. MOTIVATING EXAMPLE
In this section we present a motivating example to our

work. Since Choudhary et al [1] [2] provide a really didac-
tically explanation on possible cross-browser incompatibili-
ties issues, we use their code snippets throughout our exam-
ple.

Let us suppose that we have a web application which dis-
plays students’ profiles in a tabular format. For each stu-
dent, we are able to click on either their name or profile
picture and get a detailed profile of that student, e.g. first
and family names, student id, loans, and enrolled courses.
In such web application, two distinct faculty workers (Al-
ice and Bob) access the application on two different web
browsers. The former uses Mozilla Firefox (FF), whereas
the later uses Internet Explorer (IE).

At a first scenario, Alice wants to check whether a given
student is enrolled in some courses and she clicks on his
profile picture, hence the student profile is displayed. On
the other hand, when Bob performs the same operation, the
profile is not opened and he has to click on the student’s
name to open its profile. Listing 1 presents the code snippet
that caused the previously described incompatibility. The
reason for such incompatibility is that the onclick function
is not supported on the img tag on IE, thus we observe the
absence of a functionality on this browser.

Listing 1: An example of cross-browser incompatibilities in
an HTML snippet.

1 <img src="student -id.png" onclick="
openProfile(event)" />

At each user profile, the student’s name is the header
of that profile. Designers had decided that a small blue
shadow would be present on the names header h1, as pre-
sented in Listing 2. In such scenario, Alice would notice the
text shadow on FF whereas Bob would not notice it on IE.
The reason for that incompatibility is that the text-shadow
property is absent on IE. Notice that such incompatibility is
simply an aesthetic one, though it is still an incompatibility
between different browsers.

Listing 2: An example of cross-browser incompatibilities in a
CSS snippet.

1 h1 { text-shadow: blue 2px 2px 2px ;}

Finally, Listing 3 presents a code snippet which counts
the number of enrolled courses for a given student. Once
again, Alice would be able to see this feature on her FF
browser, whereas Bob would not notice it, as the DOM
property childElementCount is not supported on IE. In
this scenario one of the web application features, i.e. count-
ing the number of enrolled courses of a student, is not fully
accomplished through different browsers.

Listing 3: An example of cross-browser incompatibilities in a
JavaScript snippet.

1 var txt = $ ("items") . childElementCount + "
enrolled courses" ;

2 $ ("ncourses") . innerHTML = txt ;

For all the aforementioned examples, we can divide the
cross-browser incompatibilities into two categories, that is
functional/behavioral ones and visual/aesthetic ones. These
categories merely divide incompatibilities into how severely
they hinder the user experience. Nonetheless, unexpected
behaviors in both categories would result in a new bug,
which depending on its severity and complexity would im-
pact the quality as well as the cost of that web application.

As a final remark, we would like to emphasize that all the
aforementioned scenarios compare only two distinct browsers,
i.e. IE and FF. However, incompatibilities may occur on any
given browser. For instance, describing that some property
has a webkit suffix/prefix will prevent both IE and FF of
properly rendering any html component with such property.
On the other hand, the Google Chrome browser would ren-
der such component without any issues.

3. RELATED WORK
Previous studies have surveyed the demand for tools that

address different aspects of web testing [6] [5]. In such
surveys, developers discussed requirements for better tool
support. Analyzing and detecting browser compatibility was
considered one of the most important issues to be addressed.

Automated approaches reduce the burden of manually in-
specting web pages in order to find cross browser incompat-
ibilities. For instance, Mesbah et. al. [4] proposed an auto-
mated cross-browser compatibility testing tool that captures
the behavior of a web page in different specified browsers,
and captures the behavior as a finite state machine diagrams.
These diagrams are then compared in a pairwise manner and
inconsistencies may be identified. Other approaches such as
CrossCheck [1], or X-PERT [2] use crawlers on web applica-
tions, generating their DOM in different web browsers and
then, comparing them in order to identify cross-browser in-
compatibilities.

However, the pair-wise comparison of DOM elements in
different browsers is inherently limited and specific to the
compared browsers and the compared versions only. In other
words, the comparison is between pairs of browsers as op-
posed to comparing against ratified web standards. There-
fore, an issue might not be detected if it appears to be similar
in both of the examined browsers, while in reality it might
show in other browsers which have not been included in the
pair-wise comparison. Additionally, relying on the compar-
ison of DOM elements through web page crawlers can be a
time consuming task.

On the other side of the spectrum, manual approaches
to identify cross-browser incompatibilities would typically
involve consulting reference sites such as quirksmode1 or ca-
niuse2. In this approach, a developer would manually read
through these websites in order to assess if a given feature
is supported by a given set of browsers [2]. This approach
would typically be very time consuming as it requires manual
reading and inspection of a feature. Furthermore, this prac-
tice is highly dependent on the developer’s existing knowl-
edge whether or not a feature has possible incompatibilities
and requires further checking. Therefore, the manual ap-
proach would often be unreliable and error prone, as well as
time consuming.

Regarding the aforementioned approaches, they adhere to

1http://quirksmode.org
2http://canisue.com

Figure 1: Screenshot of the proposed IDE tool. A tooltip is shown whenever the user clicks on one of the highlighted red keywords,
each of which indicates a cross-browser incompatibility. These results can also be retrieved via command-line interface.

the web testing framework proposed by Rode et al [7], which
states that the overall quality of web applications should
consider features, quality aspects, and time as their core fac-
tors. As these factors may compete, e.g. time constraints
may affect quality, or complete features’ coverage may not
be achievable in a thigh schedule, we propose a lightweight
approach to identify cross-browser incompatibilities by fo-
cusing on the time factor, i.e. the static analysis of frontend
source code files can preemptively identify cross-browser in-
compatibilities even before a feature is fully functional.

4. PROPOSED TOOL
Considering the necessity of the early identification of

cross-browser incompatibilities, in this section we describe
our proposed tool, the XCompatibility Checker, a tool that
flags the parts of a front-end page that may cause incom-
patibilities.

In a nutshell, the tool is to be used in two possible ways:
as a command-line checking tool (for example, as part of
continuous integration), and as an IDE tool. The approach
considers web browser features that are the cause of com-
mon and well known compatibility issues and assign a cross-
browser compatibility (XBC) score to them, i.e. a 100%
compatibility score means that the feature has no compat-
ibility issues and runs in all existing browsers. By cumula-
tively identifying keywords that match a feature catalog, the
approach is able to compute a project’s overall XBC score.

4.1 Tool’s overview
XCompatibility Checker is a tool that can be used in two

ways: 1. to compute a compatibility score for project, and
2. to provide real-time feedback to developers while cod-
ing. Figure 2 presents the tool’s overview. As an input,
the tool receives a set of frontend files and a dataset which
map keywords to features with cross-browser incompatibil-
ities. According to file extensions, the tool parses each file,
extracts its tokens and matches them against the feature-
keywords dataset. Therefore, identifying keywords in the
files input and computing a XBC score as an output.

The feature-keywords dataset is based on caniuse, an on-
line service that provides insightful feedback for web appli-
cation features that have cross-browser incompatibilities is-
sues. On caniuse, one may query a feature and check the
cross-browser compatibility of this single feature. Although,
the service has some limitations, which are detailed as fol-
lows.

1. In order to identify features, the service relies on web
developers knowledge and his/her active querying of
keywords. Therefore, it is not possible to check every
single keyword used in a project in a non cost/time
consuming way;

2. There is no real-time feedback about the cross-browser
compatibility of a feature. Therefore, a incompatible
feature may be used in the project without taking into
account its impact on the overall project’s compatibil-
ity.

XCompatibility Checker targets these two restrictions by
providing an API that (i) computes the project’s overall

Figure 2: Tool’s overview

XBC score; and (ii) provides a comprehensive list of all key-
words that caused incompatibilities on the project. This
API is leveraged by a command line tool that can present
the overall XBC score of a project as well as its list of in-
compatibilities and an IDE plugin (as shown in Figure 1)
that can identify and highlight incompatibilities in a single
file, pinpointing browsers that are (in)compatible with the
feature related to that keyword.

4.2 Keyword-Features Matching
Our tool relies on a dataset that contains statistics about

the XBC score for individual browser features. In order to
build this dataset, we relied on the GitHub browsers compat-
ibility dataset maintained by the caniuse community3. How-
ever, this database does not provide a precise way to match
keywords to a feature. Therefore, our augmented dataset
uses the compatibility statistics or the caniuse dataset, from
which we derive our XBC score, and improves it by adding
keywords that match browser features.

As an example, let us consider the drag and drop feature
of web browsers. This feature is not supported in mobile
cellphones, and is only available on desktop web browsers,
such as Chrome or Firefox. Caniuse dataset provides the
list of browsers and versions that are compatible with this
feature, as well as a 44% score, indicating the percentage
of browsers that run this feature. However, it does not
provide which keywords are related to this feature. For in-
stance, keywords such as draggable, dragover, dragstart,
dragend, or dragleave may be used to model events related
to the drag and drop feature. Therefore, our augmented
dataset contains these keywords as a matching criteria.

With the augmented dataset at hand, HTML, CSS and
Javascript parsers (presented in the lower most box of Fig-
ure 2) are used to extract tokens from the source code of
the project and then, the tokens are matched against our
set of mapped features and keywords. This functionality
is exposed through a single method in the XCompatibility
Checker’s API and is exploited both by the command line
tool and the IDE plugin in order to identify the keywords
that are related to cross-browser incompatibilities.

3https://git.io/vyhqJ

4.3 Computing the cross-browser compatibil-
ity score

In order to compute the cross-browser compatibility score
of a project, our API elects the least compatible HTML,
CSS or Javascript feature extracted from the set of matched
keywords as the global compatibility of the analyzed project.
The rationale behind this is that a complete user experience
will exercise all components of a web page and thus, the low-
est compatibility score will define the percentage of browsers
that do not present behavioral or visual inconsistencies to
the user due to cross-browser incompatibilities.

For instance, let us suppose that we are analyzing a proj-
ect that makes use of a CSS feature called text-decoration,
which has an overall compatibility of 19%. The same proj-
ect also makes use of video feature, which is supported on
94% of the browsers In such scenario, one may say that the
cross-browser compatibility of the project is 19%. The least
compatible feature (text-decoration) has 19% of compat-
ibility and thus, this reflects the total reachability of the
browsers that do not present inconsistencies on the evalu-
ated project.

Similar to token extraction, this functionality is exposed
through a single method in the XCompatibility Checker’s
API (illustrated by the middle box detailed in Figure 2) and
is exploited by our command line tool to report project’s
overall XBC score.

5. METHODOLOGY
We are interested on finding to what extent cross-browser

incompatibilities occur throughout different frontend web
applications as well as what are the most common causes
of cross-browser incompatibilities. Additionally, we are also
interested on investigating the effects of identifying cross-
browser incompatibilities in an integrated development en-
vironment. Can a mechanism that give warns or alerts about
possible incompatibilities improve developers awareness on
cross-browser incompatibility?

In order to answer the aforementioned questions, in this
section, we detail our methodology and how we evaluated
our proposed approach. To this end, Section 5.1 formally de-
fines our research questions. Section 5.2 describes our data

collection, whereas Section 5.3 describes our selection crite-
ria for participants of a qualitative evaluation. Section 5.4
describes the design and execution of experiments that could
assess our research questions.

5.1 Research Questions
We define and detail our research questions as follows.

RQ1: How often cross-browser incompatibilities occur?

By investigating open source systems, we plan to verify
how often cross-browser incompatibilities occur in practice.
Providing data describing the frequency of incompatibilities
can be of valuable interest to researches and practitioners.
Researchers can both use these findings as a reference on
future work as well as discuss that this is indeed a recurring
problem with different issues that need to be addressed. Ad-
ditionally, a high number of incompatibilities can signal a red
flag to the industry and the open source community, thus
supporting the necessity to adhere and follow standards.

RQ2: What are the most common cross-browser in-
compatibilities?

As one identifies different cross-browser incompatibilities,
it is interesting to verify what are the most common in-
compatibilities. By identifying recurring incompatibilities,
researchers and practitioners can focus on designing tools
and techniques that can mitigate/address those specific in-
compatibilities or defining new standardized features that
overcome these incompatibilities. For instance, a review tool
could leverage the automatic detection of those common in-
compatibilities and highlight them, hence code owners could
be aware of their introduction on a pull request.

RQ3: Does a recommendation system improve software
developers awareness on cross-browser incompatibili-
ties?

Finally, we hypothesize that if there exists a high number
of cross-browser incompatibilities, the reason behind incom-
patibilities is just that developers are not aware of them.
Developers usually focus on the task at hand and, as a con-
sequence, the definition of done usually omit that a feature
should run in all browsers. If such definition is not consid-
ered, cross-browser incompatibilities may only arise later in
the project’s life-cycle through reported bugs. By providing
a mechanism that could detect the introduction of cross-
browser incompatibilities on the fly, developers could reason
about alternative solutions and thus, the number of bugs
due to cross-browser incompatibilities could be minimized.

As a final remark, it is important to emphasize that RQ1
and RQ2 foster the necessity of a tool that can address RQ3.
All our research questions can be answered by our proposed
tool, but RQ1 and RQ2’s output may give more insight into
how common cross-browser incompatibilities are and thus,
the necessity of an IDE plugin that can leverage such tool,
i.e. RQ3.

5.2 Data Collection
In order to answer RQ1 and RQ2, we gathered data from

a plethora of open source systems that had client side source
code. With such corpus, we could assess the aforementioned

Table 1: Survey questions regarding the IDE tool. Ques-
tions are based on the technology acceptance model ques-
tionnaire [3]

questions on perceived usefulness
Q1: Using the defect highlighting tool enables
me to accomplish tasks more quickly
Q2: Using the defect highlighting tool
increases my productivity
Q3: Using the defect highlighting tool makes
it easier to do my job
Q4: I would find the defect highlighting
tool useful in my job

questions on perceived ease of use
Q5: Learning to operate the defect
highlighting tool is easy for me
Q6: My interaction with the defect
highlighting tool is clear and understandable
Q7: I find it easy to get the defect
highlighting tool to do what I want it to do

research questions. While gathering the open source sys-
tems, our objective was to have a small yet representative set
of applications with different frontend characteristics. The
data extraction process was executed as follows.

We selected a random sample of applications from a cu-
rated list of web applications4 available on GitHub5. The
selected list contains web applications in different languages,
such as python and javascript, as well as different frame-
works, e.g. Django, ReactJS, or Rails. The list is frequently
updated by different contributors and provides an easy sam-
ple of projects with different sizes and contributors.

It is important to emphasize that selecting only projects
with some threshold on its statistics could have biased our
evaluation. High standard projects with consolidated com-
munities and a long life span usually adhere to high stan-
dards and well defined practices, which could not represent
the overall characteristics of open source projects. On the
other hand, by selecting projects from a random sample our
aim was to have projects in different spectrums of the open
source community. Therefore, our selected projects range
from small web applications with few contributors to well
established ones, such as Redmine6 a project management
tool used by different companies to track their software de-
velopment tasks.

We started with a sample of 48 projects and our minimum
selection criteria defined that the projects had to be active in
the last 3 months from the time that the data collection pro-
cess was carried over. Since the list was curated by GitHub
users, we considered the risk of a simple API been listed
as a web application, thus we manually inspected the se-
lected sample in order to verify if they indeed had frontend
source code. From 48 projects, 41 (85%) were still active
and 38(79%) had frontend source code. Therefore, these 38
projects consist the corpus or object of study for questions
RQ1 and RQ2.

Table 2 describes some of the characteristics of the se-
lected projects. It presents the project’s name and a brief

4https://git.io/vySRf
5https://github.com/
6http://www.redmine.org/

description of the project. It also contains the number of
Javascript files, HTML files, and css files, respectively. Fi-
nally, the files column represents the sum of all the afore-
mentioned file types, and LOC the total number of lines of
code in all these files. The last two columns represent the
number of detected incompatibilities and the overall cross-
browser compatibility score (XBC) of each project, which
will be further discussed in Section 6.

5.3 Participant Selection
In order to answer RQ3 it is necessary to evaluate how

software developers perceive browser incompatibilities while
they execute daily frontend software development tasks. To
this end, we required software developers with at least some
experience developing web applications. Due to time con-
straints, we were unable to recruit software developers from
industry and, as a consequence, we relied on recruiting grad-
uate students from the departments of computer science and
electrical engineering from the University of British Columbia.

Out of 10 invitations, 4 graduate students accepted and
participated on our experiment. Regarding recruited par-
ticipants, it is important to emphasize that graduate stu-
dents may have a ground knowledge on software develop-
ment practices and most of them had previous experience de-
signing and developing complex systems, though they might
not be so familiarized with web development practices and
cross-browser incompatibilities. We believe that such char-
acteristics reflect an open source community, in which differ-
ent contributors have different levels of expertise. Therefore,
our small sample of participants might reflect this scenario
and thus, we considered them as the source of information
to assess RQ3.

5.4 Research Method
In this section, we describe the design of empirical exper-

iments that could assess our hypotheses and research ques-
tions. We break up the design according to our research
questions and the corpus of study, i.e. open source projects,
or human participants.

5.4.1 Design and evaluation of cross-browser incom-
patibilities in open source systems

In order do evaluate RQ1 and RQ2 it is necessary to mea-
sure a cross-browser incompatibility score in each one of the
open source systems of our dataset. At each project, we
gather the overall cross-browser compatibility score of that
project as well as a list with the identified cross-browser
incompatibilities of that project.

We compute the XBC score of each project through our
command line tool. For each project, the tool’s input is
a list that contains pointers to the project’s GitHub source
code location as well as a list of files and folders that contain
the location of the project’s frontend files. The list of files
and folder was gathered according to the manual inspection
described on Section 5.2 and the inspection was assisted by
a regular expression filter, which looked for the three types
of files that are supported by our approach, i.e. js, css,
and html files.

As we gathered the cross-browser compatibility score and
incompatibilities list of each project, we analyzed the data
and plotted the number of found issues through a histogram,
presented in Figure 3. In a similar way, we counted the fre-
quency of each incompatibility feature throughout the proj-

ects and plotted the top 10 incompatibility feature, as pre-
sented in Figure 4. Therefore, deriving our discussion and
conclusions according to the extracted list of issues, overall
XBC score and keywords frequency.

5.4.2 Design and evaluation of software developers
awareness on cross-browser incompatibilities

In order to evaluate RQ3 it is necessary to assess software
developers’ awareness on cross-browser incompatibility is-
sues. We hypothesize that developers do not consider cross-
browser incompatibilities while executing their daily basis
activities. Therefore, this section describes an empirical ex-
periment that can verify our refute this hypothesis.

The overall objective of the experiment is to check whether
participants consider cross-browser incompatibilities while
executing frontend tasks. To this extend, we designed small
code review tasks that could be executed within the time
frame of the experiment. Each experiment section spams
from 20 up to 30 minutes and requires that participants
review a random code snippet out of 4 real web pages in
two different environments, which will be detailed in the
following paragraphs.

Table 3 provides a small description of each one of the eval-
uated applications. On the other hand, Listing 4 presents a
code snippet of one of the reviewed applications, in which
the styles cursor and translate3d are examples of incom-
patibilities. For the sake of simplicity, we considered that
the reviewed code was a new feature with just added code,
rather than a comparison of previously existing code and
added/changed one. At each section, we randomly present
the tasks to the participants one at a time and then, we pre-
sented a random sample of a code snippet of that applica-
tion. With those artifacts at hand, we asked the participants
to point out if there are any possible defects or issues, as in a
normal code review process. We also record the time taken
to complete each one of the reviews. By the end of the sec-
tions, a simple debrief explained the experiment purpose to
the participants and expected outcomes. Finally, a follow-up
survey gathered demographical data about the participants
as well as asked them if they have any statements regarding
experiment’s tasks.

Listing 4: Sample reviewed code
1 <div style="transform:translate3d(0, 0, 0)

;">
2 <ul class="slider -list" style="transform

:translate3d(0px, 0px, 0);cursor:
inherit;...">

3 <div>
4
5 <img title="Introducing FREE 2-Day

Shipping." />
6
7 </div>
8 . . .
9

10 </div>

Regarding the reviewed code snippets, it is important to
emphasize that some of the presented snippets did not have
any issues and were fully functional in any browser, whereas
other ones have cross-browser incompatibilities, but were
still runnable in some browsers. Such scenario might reflect
frontend development practices, in which a feature is devel-
oped without taking into consideration the feature behavior

Table 2: Projects overview and evaluated cross-browser compatibility scores
files

Project Description
js html css total

#LOC # issues XBC (%)

Trello tribute A clone of Trello with React and Phoenix 40 0 0 40 2339 0 100
Cerebro One-input productivity booster 142 23 2 167 6770 0 100
Wekan The open-source Trello-like kanban 82 0 0 82 7101 0 100
Spina A beautiful CMS for Rails Developers 13 0 5 18 10665 0 100
SoundRedux SoundCloud Client Isomorphic Quiz Wall for itsquiz.com 91 0 2 93 5261 0 100
ReactionCommerce A JavaScript Ecommerce App 829 6 176 1011 56141 0 100
CoderMania An E-Learning Platform 5 1 4 10 401 0 100
Kinematic Visual Docker Container Management on Mac and Windows 76 0 1 77 6768 0 100
Favesound-redux The SoundCloud Client in React + Redux made with passion! 122 0 1 123 4267 0 100
In-Browser Playground A playground for in-browser interpreters 29 0 1 30 1090 0 100
Itsquiz-wall Isomorphic Quiz Wall for itsquiz.com 37 2 0 39 1538 0 100
Hours Time registration that doesn’t suck 3 0 3 6 267 0 100
Calypso The new JavaScript- and API-powered WordPress.com 1868 1 0 1869 161743 13 97
Discourse A Platform for Community Discussion 1695 3 140 1838 113810 19 94

React-Powered Hacker News Client 42 1 1 44 2620 14 19
Huginn Agent system that perform tasks online for you 20 3 5 28 14574 3 19
OpenSourceBilling Beautiful Simple Billing Software 1868 1 0 1869 161743 3 19
Fulcrum Agile Project Management Tool 53 3 4 60 8091 3 19
Eventx Event Management System without Hassle 32 9 5 46 2230 82 19
Loomio Make decisions together 3 2 5 10 509 5 19
Codango Social Network for Coders 11 4 43 58 60519 22 19
Mezzanine CMS framework for Django 104 29 87 220 24489 73 19
microapps-donation A single page application that allows people to donate money 11 1 1 13 5328 29 19
OpenProject Project Management System 277 3 106 386 19228 8 19
Coderwall Professional network for Software 137 5 4 146 57477 8 19

Django-leonardo
CMS for everyone, easy to deploy and scale, robust modular
system with many packages

51 11 202 264 19571 32 19

Huginn Agent system that perform tasks online for you 20 3 5 28 14574 3 19
OpenSourceBilling Beautiful Simple Billing Software 1868 1 0 1869 161743 3 19

Wagtail
A Django content management system focused on flexibility and
user experience

100 6 279 385 18804 16 19

RedMine Project Management Application 101 13 28 142 10257 30 19
Rocket.Chat A web chat platform 965 11 182 1158 69262 6 19
Sharetribe A Marketplace Platform 196 45 2 243 31611 28 19
Shoop E-commerce Platform 119 5 8 132 12977 21 19
Django-CMS Easy to use and developer friendly CMS 173 9 163 345 33229 33 19
Spectacle A React library for Deck/Slide Presentations 93 6 1 100 4705 6 19
Helpy Mobile First Helpdesk Application 110 114 22 246 55144 417 19
Spree Ecommerce Solution 94 17 29 140 18493 3 19

MERNMAP
An interactive map for MERN(MongoDB, ExpressJS, ReactJS,
NodeJS) Stack Developers

55 3 1 59 17525 75 19

Django-fiber A simple, user-friendly CMS for all your Django projects 444 65 15 524 49140 858 0

Perseus
Perseus is Khan Academy’s new exercise question editor and
renderer

109 8 2 119 360438 259 0

Table 3: Participants tasks for the user study.
Task Web page Description
A Amazon Review a piece of the code related

to the on-line store
B Yahoo Review the code related to the

page’s news feed
C MSN Review the code related to the

page’s news feed
D Walmart Review a piece of the code related

to the on-line store

throughout different browsers. As a consequence, a later bug
would have to be registered asking to address the feature in
a specific browser/version.

The experiment was executed in two environments, pre-
sented to the participants in a randomly selected order. In
the first environment, participants are given a html web
page and its source code as well as a standard version of
the Atom IDE7. On the other hand, the second environ-
ment consider the same artifacts with an augmented version
of the Atom IDE. In this augmented version, we run our
cross-browser incompatibility approach and highlight possi-
ble keywords that might give hints to the developers on the
incompatibility issues. Considering these two scenarios, we
gathered the number of issues on each review and the time
taken on each one of them.

6. RESULTS AND DISCUSSION
In this section, we present the results and discussion of

7https://atom.io/

our proposed approach according to our defined research
questions, i.e. RQ1 (Section 6.1), RQ2 (Section 6.2), and
RQ3 (Section 6.3).

6.1 What is the overall measured cross-browser
compatibility?

In order to measure the overall cross-browser compatibil-
ity score, we computed the compatibility score of our cor-
pus of open source systems. Table 2 presents the computed
scores per project on descending order.

By defining a threshold of 90% for projects as an accept-
able cross-browser compatibility score, 14 projects (36%)
have an acceptable XBC score. On the other hand, 24 proj-
ects (64%) had compatibility issues, with a median XBC
score of 19%, meaning that in their evaluated versions such
projects would only run in this percentage of browsers. Ta-
ble 2 divides the upper half of the evaluated projects as
cross-browser compatible projects and the lower half, as in-
compatible ones.

Regarding the projects without compatibility issues, it is
worth to note that in general they are fairly small proj-
ects with less than 10,000 lines of code. Nonetheless Dis-
course, Calypso, ReactionCommerce, and Spina are com-
plex systems and they still have a 100% XBC score. By
inspecting GitHub issues on these projects, we were able to
identify active discussion regarding cross-browser incompat-
ibilities. For instance, GitHub issue #370 of the Reaction-
Commerce project discusses how default styling may inter-
fere with cross-browser compatibility: “the components do
need to have some default styling and structure, so I’m not
sure there’s anyway around including some BS3 styles when
needed for compatibility”. A similar query on the Calypso
project indicates that it has 1,501 issues discussing compat-

3

11

20

29

38

46

55

64

73

82
fu

lc
ru

m

hu
gi

nn

sp
re

e

lo
om

io

R
oc

ke
t.C

ha
t

sp
ec

ta
cl

e

co
de

rw
al

l−
le

ga
cy

op
en

pr
oj

ec
t

w
p−

ca
ly

ps
o

re
ac

t−
hn

w
ag

ta
il

di
sc

ou
rs

e

sh
uu

p

co
da

ng
o

sh
ar

et
rib

e

m
ic

ro
ap

ps
−

do
na

tio
n

re
dm

in
e

dj
an

go
−

le
on

ar
do

dj
an

go
−

cm
s

m
ez

za
ni

ne

m
er

nm
ap

ev
en

tx

Figure 3: Number of issues per project

ibility. Disconsidering middleware compatibility discussions,
manual inspection of these issues point out to the fact that
some developers actively discuss browser compatibility, e.g.
“in this PR we are resetting styles to support the compatibil-
ity also for the dialog”.

On the other side of the spectrum, 24 projects had incom-
patibility issues. Figure 3 presents the number of issues per
project. The graph excludes three projects (Helpy, Django-
fiber, and Perseus) that are outliers with a high number
of issues (#issues > 100) as well as projects with a 100%
XBC score (#issues = 0). Regarding the remaining proj-
ects, the median value of the number of issues per project
is 7, though they highly compromise the compatibility of
the projects and, as a consequence their XBC score has a
median value of 19%.

As a final remark, we repeated the process of querying the
compatibility keyword on a random sample of the evaluated
projects. We checked discussions on Redmine, Huginn, and
Mezzanine. From our manual inspection of the Redmine
project, we believe that incompatibilities are resolved on-
the-fly, i.e. eventual functional/behavior incompatibilities
are identified through registered defects. As an example, e.g.
Redmine’s defect #7954 discusses incompatibility issues on
IE 9: “IE 9 can not select issues, does not display context
menu”. By our manual inspection, we conclude that the
majority of the compatibility issues that matched our query
discuss middleware compatibility rather than cross-browser
compatibility. The other two randomly selected projects,
Huginn and Mezzanine, follow the same pattern.

According to the aforementioned discussion we summarize
our findings on RQ1 as follows.

RQ1: Roughly, 60% of the evaluated projects have cross-
browser incompatibilities. Most of the evaluated proj-
ects would run in only 20% of current existing web
browsers.

6.2 What are the most frequent cross-browser
incompatibility issues?

In order to measure the most frequent cross-browser in-
compatibility issues, we counted the frequency of the prop-

apng

internationalization

multibackgrounds

png−alpha

css−transitions

devicepixelratio

font−smooth

css−animation

background−img−opts

text−decoration

0 200 400 600

Figure 4: 10 most frequent properties that cause cross-
browser incompatibilities

erties that cause incompatibilities throughout the evaluated
projects. Figure 4 presents the properties’ frequency.

The most frequent issue is text-decoration8. Text dec-
oration styling refer to the method of defining the type, style
and color of lines. Text decoration is not supported in most
of the existing browsers (e.g. IE, Edge, or Android Browser),
though it can be enabled in some browsers (Chrome and
Opera). The overall XBC score of the property is 18.49%
and as a consequence, the reason why most of the evalu-
ated projects had an overall score of 19%. It is important to
note that, despite being a visual/aesthetic incompatibility,
this property might affect users’ experience and diminish the
overall readability of a web page. For instance, text deco-
ration could be used to highlight price values or promotion
codes and if not properly presented, user experience and a
company revenue could be affected.

Roughly as frequent as the text-decoration property,
the background-img-options9 property is a CSS3 feature
that is used in background images. Its XBC scoreis 97.83%
and it is supported in almost all browsers (with partial sup-
port on Opera Mini). The same applies to most of the other
top 10 evaluated properties, e.g. css-animation, or css-
transitions. As all of them are well supported properties,
there are few concerns regarding cross-browser incompati-
bilities within those features.

On the other hand, font-smooth controls the application
of anti-aliasing when fonts are rendered and its overall XBC
score is 37.26%. The property is only supported on Fire-
fox, Chrome, Safari, and Opera and it is currently marked
as a non-standard feature and the Mozilla Developer Net-
work flags it as a largely incompatible, with different and
unexpected behaviors. Similar to text decoration, this fea-
ture might affect user experience and it might compromise
the overall quality of a web page. The font-smooth XBC
score is still higher than the text-decoration and due to
how we compute the XBC score, the lowest one prevails.
Nonetheless, both properties should be taken into account.

8https://www.w3schools.com/cssref/pr text text-decoration.asp
9https://www.w3schools.com/css/css background.asp

Table 4: Results of user study for the proposed IDE tool
proposed IDE task duration # of reported

participant # task tool on/off (minutes : seconds) incompatibilities

1 A off 6:50 8
1 B off 4:44 8
1 C on 7:27 28
1 D on 5:41 12
2 D off 10:11 2
2 C on 7:41 7
2 B off 6:24 1
2 A on 7:19 10
3 C off 12:56 5
3 D off 3:47 0
3 A on 14:32 22
3 B on 6:13 14
4 B on 6:48 13
4 A off 7:33 4
4 D on 5:46 34
4 C off 5:32 2

According to the XBC score of the top 10 properties, it
would be advisable that the research community addresses
text-decoration and font-smooth properties. Since these
are the two properties with the lowest XBC score, provid-
ing new properties or ways to deprecate them would highly
improve projects’ overall XBC score. For instance, by fix-
ing text-decoration issues on the Redmine project, the
project’s XBC score would increase from 19% to 92%.

RQ2: The most frequent cross-browser incompatibili-
ties are text-decoration and background-img-option.
It is worth to note that font-smooth and also text-
decoration are the properties with the lowest identi-
fied XBC scores.

6.3 Does a recommendation system improve
awareness of cross-browser incompatibil-
ities?

In order to assess if a recommendation system can be use-
ful in increasing developers’ awareness of browser incompat-
ibilities, we performed a user study as described in section
5.4, in addition to a post-experiment survey using the tech-
nology acceptance model questionnaire [3].

Table 4 shows the results of the user study for the pro-
posed IDE tool. Based on the results of this table, we ob-
serve that having the IDE tool ON for any of the tasks re-
sults in more cross-browser incompatibilities being reported
by participants. For example, participants reported between
4 - 8 incompatibilities for task A when the IDE tool was off,
but reported 10 - 22 incompatibilities for the same task when
the IDE tool was on. The same trend can be observed for the
other tasks: 1 - 8 (tool off) vs. 13 - 14 (tool on) for task B,
2 - 5 (tool off) vs. 7 - 22 (tool on) for task C, and 0 - 2 (tool
off) vs. 12 - 34 (tool on) for task D. These results show that
developers become aware of more incompatibilities when the
proposed IDE tool is being utilized.

Figure 5 shows the results of the post-experiment survey
we asked the participants to fill. The majority of responses
(about 90%) had a favorable opinion (defined as all responses
more favorable than neutral) on the usefulness and ease of
use of the IDE tool. These results indicate that participants
generally found the IDE tool to be useful in detecting cross-
browser incompatibilities and that it was easy for them to

report these incompatibilities using the tool.

6.3.1 Participants’ comments
In addition to the user study and the technology accep-

tance questionnaire previously described, we also surveyed
participants on open-ended questions and asked them to pro-
vide feedback regarding how useful the IDE tool was in their
opinion. We include some of the participants’ comments in
the following paragraphs.

Some participants had a preference for visual examination
in their analysis:

“I mostly detected any incompatibilities visually.”
“The code highlight is very nice, but its not immediate to

know where it is in the visual page”.
These participants assumed that all highlighted code would

correspond to a certain visual element in the page, which
is not accurate since highlighted incompatibilities also in-
clude background Javascript processes or other non-visual
(i.e. functional) attributes.

Another comment mentions the difficulty of manually look-
ing up compatibilities:

“[manually] looking up the compatibility of every feature is
tedious, and unlikely to to happen for many developers.”

which is indeed one of the main issues this paper is trying
to solve by providing an automated recommendation system.
As one comment mentions:

“it was very easy [to use] because it directs your attention
towards finding potential inconsistencies”

RQ3: A recommendation system does seem to improve
awareness of cross-browser incompatibilities. Partici-
pants became aware of more incompatibilities when us-
ing the tool versus not using the tool. In addition, the
majority of survey responses had a favorable opinion
on the usefulness and ease of use of the tool.

7. THREATS TO VALIDITY
Regarding our proposed approach and designed/developed

tool, it is important to highlight threats to the validity of
our results. We base our threats to validity discussion ac-
cording to Wohlin guidelines on experimentation in software
engineering [8].

The threat to our conclusions is twofold: (i) due to the
usage of parsers and how keywords are extracted, our XBC

Q1 Q2 Q3 Q4 Q5 Q6 Q7

N
um

be
r

of
 r

es
po

ns
es

0
1

2
3

4

Q1 Q2 Q3 Q4 Q5 Q6 Q7

N
um

be
r

of
 r

es
po

ns
es

0
1

2
3

4

extremely likely
quite likely
slightly likely
neither

slightly unlikely
quite unlikely
extremely unlikely

extremely likely
quite likely
slightly likely
neither

slightly unlikely
quite unlikely
extremely unlikely

Figure 5: Post-experiment survey of participants.

score represents a lower bound on the compatibility of the
evaluated projects, i.e. we are not able to extract mixed
files such as embedded Javascript into HTML files, or inline
css styling on some of the evaluated frameworks, thus there
might be more incompatibilities than the detected ones; (ii)
due to the relatively small number of participants, we do
not have statistical power to derive conclusions from our
experiment with human participants, hence we rely on the
qualitative discussion of the tool’s usage and also on the
technology acceptance model survey [3].

Internal threats were mitigated by the randomization of
our experiment, i.e. the IDE plugin was turned on and off in
a random manner and the order of executing tasks was also
randomized. Therefore, history and maturation threats were
diminished. Also, participants’ selection imposes a threat to
our results since we used graduate students rather than web
developers. Nonetheless, our recruiting criteria was designed
in order to mitigate such threat.

In order to mitigate external threats, we have considered a
corpus of 38 open source systems and evaluated our tool run-
ning it in this dataset. The evaluated systems differ on size,
complexity, life-spas, and number of contributors. There-
fore, they constitute a representative sample of different web
applications. However, we emphasize that we did not eval-
uate if and how web designers contribute to such systems,
hence there is a risk involving the usage of only applications
that contain core and non-rich web browser features that
may be widely cross-browser compatible. Future investiga-
tion of rich frontend applications will address this issue.

8. CONCLUSION
Web browsers are built by different organizations and writ-

ing software that runs smoothly on all existing browsers
is a challenging task. The importance of reaching a good
user base, which is distributed across different browsers, is
high. Even though, cross-browser incompatibilities may hin-
der user experience and affect the quality and revenue of
web pages. In this work we proposed a lightweight tool
that could address this issue by bringing awareness to de-
velopers regarding cross-browser incompatibilities. By au-
tomatizing the process of identifying properties that are not
supported by existing browsers, developers can improve the

overall reachability of their web pages, i.e. they can deliver
a better user experience with less browser-incompatibility
issues.

The tool’s evaluation was twofold: (i) we used it to as-
sess the cross-browser incompatibilities of a corpus of open
source projects; and (ii) we integrated it into an IDE in
order to assess how it can assist developers on the task of
detecting cross-browser incompatibilities issues. Our find-
ings indicate that 60% of the evaluated projects have cross-
browser incompatibilities, and most of the evaluated proj-
ects correctly run on only 20% of current existing browsers.
The most frequent cross-browser incompatibilities’ proper-
ties have an overall XBC score of 90%, i.e. they can run
in this percentage of browsers. However, font-smooth and
text-decoration properties do not adhere to this pattern
and these two properties are the cause of the 20% computed
compatibility for the evaluated projects.

As future work, a number of tool improvements can be
done. For instance, the tool could be run on a larger dataset
to provide more insightful data, more GitHub’s issues could
be mined to find discussions about cross-browser compati-
bilities and this could be linked to the actual results from
the tool. Finally, more keywords and tokens could be added
to our datasets in order to improve the tool’s accuracy and
precisely reflect the current state of web development.

9. REFERENCES
[1] S. R. Choudhary, M. R. Prasad, and A. Orso.

CrossCheck: Combining crawling and differencing to
better detect cross-browser incompatibilities in web
applications. Proceedings - IEEE 5th International
Conference on Software Testing, Verification and
Validation, ICST 2012, pages 171–180, 2012.

[2] S. R. Choudhary, M. R. Prasad, and A. Orso. X-PERT:
Accurate identification of cross-browser issues in web
applications. Proceedings - International Conference on
Software Engineering, pages 702–711, 2013.

[3] F. D. Davis. Perceived usefulness, perceived ease of use,
and user acceptance of information technology. MIS Q.,
13(3):319–340, Sept. 1989.

[4] A. Mesbah and M. R. Prasad. Automated
cross-browser compatibility testing. Proceeding of the
33rd international conference on Software engineering -
ICSE ’11, page 561, 2011.

[5] R. Ramler, E. Weippl, M. Winterer, W. Schwinger, and
J. Altmann. A quality-driven approach to web testing.
Ibero-american Conference on Web Engineering, ICWE
2002, 1:81–95, 2002.

[6] F. Ricca and P. Tonella. Web testing: A roadmap for
the empirical research. Proceedings - Seventh IEEE
International Symposium on Web Site Evolution, WSE
2005, 2005:63–70, 2005.

[7] J. Rode, M. B. Rosson, and M. Perez-Quinones. The
challenges of web engineering and requirements for
better tool support. Methods, 2002.

[8] C. Wohlin, P. Runeson, M. Host, M. C. Ohlsson,
B. Regnell, and A. Wesslen. Experimentation in
Software Engineering: An Introduction. Kluwer
Academic Publishers, Norwell, MA, USA, 2000.

	Introduction
	Motivating Example
	Related Work
	Proposed Tool
	Tool's overview
	Keyword-Features Matching
	Computing the cross-browser compatibility score

	Methodology
	Research Questions
	Data Collection
	Participant Selection
	Research Method
	Design and evaluation of cross-browser incompatibilities in open source systems
	Design and evaluation of software developers awareness on cross-browser incompatibilities

	Results and Discussion
	What is the overall measured cross-browser compatibility?
	What are the most frequent cross-browser incompatibility issues?
	Does a recommendation system improve awareness of cross-browser incompatibilities?
	Participants' comments

	Threats to Validity
	Conclusion
	References

