Salvador: A Decentralized, Secure Backup System

Daniel Almeida' and Rodrigo Araujo!

L Department of Computer Science, University of British Columbia
{daa, rodarauj}@cs.ubc.ca

ABSTRACT

In this paper we present Salvador, a decentralized and
backup system. Salvador relies on a Peer-to-Peer (P2P)
architecture to enable users to store and access their files
in a secure manner without sharing entire copies of files.
We compare the overall network traffic and time taken to
complete operations between a hybrid P2P design (Version
1) and a fully decentralized design (Version 2) while exper-
imenting with different files and file block sizes.

I. INTRODUCTION

Many modern systems that offer file backup and sharing
rely on distributed storage in order to achieve load balanc-
ing, fault-tolerance, and scalability. Systems like Dropbox
provide a form of interaction that resembles a client-server
from the user’s perspective while leveraging a Cloud-based
architecture and that is highly distributed. Dropbox is a file
hosting service that enables users to store and share personal
data with semantics similar to those of a local file system
while storing the data across many geographically distributed
servers. Other systems adopt a P2P architecture, such as
pStore [1] and the Cooperative File System (CFES) [2]. pStore
is a secure, distributed backup system that leverages unused
disk space that offers features such as encryption and sharing
and CFS is a read-only storage system.

In this paper we present Salvador, a system that draws
inspiration from many of the systems mentioned. Salvador
does not offer file sharing capabilities, which means that
the only user with access to the entire file and allowed to
backup or restore that file is its owner and creator of that
file. At the same time, the semantics of Salvador are similar
to that of Dropbox in the sense that users can easily create,
edit, or delete files on their computer while being able to
recover such files by collecting its parts from peers and
reconstructing the file locally.

II. SOLUTION

In this project, we implemented a decentralized, P2P file
backup system. We present the following scenario to define
the terminology we use and give an example of how Salvador
would be used.

A student at the University of British Columbia has just
finished taking notes during a Distributed Systems lecture.
He used a simple text file on his computer, but because
those are precious notes that will help him prepare for
the final exam, he decides to use Salvador to backup his
notes. All he has to do is to use a command-line interface

to issue the following command: salvador backup /docu-
ments/DistSysNotes.txt. The file DistSysNotes.txt is split into
blocks that are encrypted and sent to peers to be stored. In
this scenario, we refer to the student’s computer as the owner.
Given a file A, an owner is the only peer that has the entire
file A and is able to backup or restore the latest version of A
(which we call Backup and Restore operations, respectively).
The computers storing file A’s blocks are called peers.

A. Assumptions

Firstly, we assume that a peer is never compromised, i.e.,
only the owner of a file has the private key used to encrypt
a file (or its blocks). Therefore, no other user in the system
can successfully decrypt that file.

Secondly, we assume that peers execute the same code
and the communication between peers is reliable, i.e., all
messages are delivered in order and are not corrupted, but
might be delayed.

Thirdly, we assume that a joining node knows at least one
node already in the network. This node is used by the joining
node to obtain a list of known nodes in the network.

B. Development process

We have split the development of Salvador into two
phases:

1) Version 1. Initially, we adopted a hybrid P2P archi-
tecture in order to lay the foundation of Salvador and
worked on its semantics and usability;

2) Version 2. Then, we adopted a full P2P architecture by
removing the central server introduced in the first ver-
sion. As the basic functionality was already achieved
at this point, it was easier to safely change the internal
architecture to support the removal of the central server
and move its functionality to the peers.

C. Version 1

The very first version of Salvador is based on a hybrid P2P
implementation and assumes no failures of either the server
or the peers (owner and hosts). The Server is responsible for
coordinating peers during Backup or Restore transactions.
The responsibilities of the Server include determining which
hosts an owner should send his blocks to and providing
their locations. The server also keeps track of the status
of an Operation and which blocks have been successfully
stored by hosts, informing the owner once a Backup or
Restore Operation has been completed. We started with a
naive implementation as the foundation that represents how

Salvador should work in an ideal scenario and on which we
can iterate towards a fully decentralized solution. The steps
involved in a Backup Operation are as follows (Figure 1):

1) Owner requests metadata of File A, starting a new
Operation. The Server responds with a list of available
peers assigned to hold each of File A’s blocks;

2) Owner encrypt the File A and splits it into blocks;

3) Owner sends blocks to peers according to metadata
received from the Server;

4) Peers acknowledge (ACK) the blocks they received by
sending a message to the server, which will trigger an
update to the metadata of File A;

5) Server notifies owner that operation was successful and
all of File A’s blocks have been successfully stored.

CONFEEAE\E{%%%E&ISSFUL @

ENCRYPT

+ SPLIT FILE REQUEST METADATA @

SERVER
< —' ‘
—
I e S
L M
S —
Dy JO
.’\ r ~+ SPREAD BLOCKS @ §
P = = *‘: BT
“—'7| ;
;\]
>
g
3

Fig. 1. Spread procedure on Version 1
The steps involved in a Restore Operation follow a similar
approach to the Backup Operation:

1) Owner requests metadata about the blocks of File A.
Server responds with a list of peers storing File A’s
blocks;

2) Owner sends request to retrieve blocks to each peer in
the previous list;

3) Peers send the requested blocks to the owner and
expect an ACK in return;

4) When the owner receives a block, it sends an ACK to
the sender peer and to the server;

5) When the owner receives all File A’s blocks, it recon-
structs the File A and finishes the Restore Operation.

D. Version 2

The main difference in Version 2 is the lack of the central
server, meaning that the responsibilities once performed by
the Server have now been moved the Peers. The Peers
themselves are responsible for coordinating and maintaining
the metadata about their files and blocks.

Although the overall architecture has changed, the core
features seem to be exactly the same to the user. Figure 2
shows how a new peer joins the network: a new peer (N1),
when joining the network, sends a PING message to a known
peer in the network (in this case N2). In return, N2 replies
with a PONG message that contains a list of all peers it
already knows.

Existing node

------------ Joining node

Update nodes
info (3)

S D

PING (1)

Kinow nodes: N3, N4]
PONG (2)

>

Fig. 2. New node joins the network - Version 2

In this version, the Backup Operation is more straightfor-
ward; the owner node sends a Backup Request to all known
nodes, the ones that respond faster will be chosen to receive
the blocks. The steps involved in a typical scenario of a
Backup Request Operation are as follows (Figure 3):

1) Owner node (N1) sends a request to all known peers,
in this scenario: N2, N3 and N4. It will request the
result of (number of blocks to be backed up / number
of nodes in the network) blocks from each peer;

2) N2 and N3 respond with an ”Ok” message for all
requested blocks, however, N4 can store only 2 out
of the 4 requested blocks;

3) After a timeout, N1 starts the backup and realizes it is
missing 2 blocks space;

4) N1 then sends another round of requests for the re-
maining space necessary to fully backup all blocks;

5) N2 responds quicker;

6) NI starts to backup the 2 remaining blocks. Messages
from N3 and N4 will be ignored;

7) After a timeout, N3 and N4 will free the blocks
reserved for N1.

A mechanism for reserving blocks space and eventually
releasing them is necessary. When a peer receives a Backup
Request, it must either accept it or reject it. However, due
to the concurrent nature of the system, a second Backup
Request may arrive after the first request but before the
related blocks have been transferred. Without a mechanism to
reserve blocks for a certain request, the same storage space
might be promised to two or more peers. Salvador uses a
timeout to limit for how long the requested blocks are kept
reserved for a certain peer. If the expected operation doesn’t
start soon enough, the blocks are released and made available

to other peers.

Req(3) [1]

Res(3) [2]

; Rres(2) 181 S
6] ..--- <
L Req(2) [4]

Fig. 3. Backup Operation - Version 2

III. EVALUATION

We had two main goals in this evaluation:

1) Evaluate the network load between owner and peers;

2) Evaluate the performance of both backup and restore

operations in order to understand how it changes as
the variables change (e.g., block size, file size).
We have experimented with different number of peers in the
network, different block sizes and file sizes.

For the first version of Salvador, Figure 4 shows the
correlation between the time to backup a file and the size
of the block being stored among the peers. It is easy to see
that the bigger the block size, the faster the backup (and
restore) is. However, this trade-off is more complex than it
seems; bigger block size means less granularity and we will

have to depend on the availability of a node that might be
storing big chunks of our file. Even though it will be slower
to backup/restore, with more granularity we can spread more
blocks, which we assume is safer in the long run. Yet, to
make this evaluation precisely, we need to test this prototype
in real world and large scale scenarios.

Backup time x Block size

600
500
400

300

Backup Time (Seconds)

200

100

10k 20k 30k 40k 50k 60k

Block Size (Bytes)

Fig. 4. Version 1. Correlation between backup time and block size

Similarly, Figure 5 shows the correlation between network
load and block size in the first version. As the block size
gets bigger, the network load to exchange messages gets
smaller but we fall in the same granularity trade-off. Our
initial expectation was to see the network load decrease when
we moved from Version 1 to Version 2 (full P2P).

700k

600k

o
=4
=1

400k

Network Load (Bytes)
w
=
2

200k

100k

10k 20k 30k 0k 50k 60k

Block Size (seconds)

Fig. 5. Version 1. Correlation between network load and block size

In this evaluation of the full P2P version, we experimented
with 2 different file sizes. Figure 6 shows a decrease in
the backup time, whereas Figure 7 and Figure 8 display a
considerable decrease in the network load.

These experiments show that moving from a centralized
client-server architecture to P2P architecture not only im-
proved the speed to fully backup and restore a file, but also

reduced the amount of messages being exchanged among the
nodes, which resulted in decreased network load in a node.

However, this experiment was executed in a controlled and
local environment and the results of this evaluation could
change significantly in a real world scenario with real and
geographically distributed users. That being said, we believe
this evaluation provides good and useful insights.

Block size x backup time

— File Size: 58179 bytes

60 File Size: 241991 bytes

50
40
30
20

sk 10k 15k 20k 25k 30k

Backup Time (seconds)

Block Size (Bytes)

Fig. 6. Version 2. Correlation between backup time and block size
Read network load x Block Size
70k File Size: 58179 bytes
‘ File Size: 241991 bytes
60k
8
B 50k
h-l
g
2 40k
=
g
2 30k
¢
B
@ 20k
10k
0
sk 10k 15k 20k 25k 30k
Block Size (Bytes)
Fig. 7. Version 2. Correlation between read network load and block size

IV. CONCLUSION AND FUTURE WORK

In this work we implemented Salvador, a P2P file storage
system that enables the user to backup and restore files
without sharing the entire copy of a file with a central server.
We implemented this by encrypting and breaking a file into
block and then spreading them among peers in this network.
When a user wants to recover a backed up file, the system
will request the blocks from each peer and then reconstruct
the file.

As a fully decentralized solution, Salvador has to be able
to maintain the metadata of files consistent in the presence of
failures of peers, which was challenging to implement. Other

Write network load x Block Size

File Size: 58179 bytes
160k File Size: 241991 bytes
140k
120k

100k

80k

Write network load (bytes)

sk 10k 15k 20k 25k 30k

Block size (bytes)

Fig. 8. Version 2. Correlation between write network load and block size

important issues are liveness and availability since peers can
arbitrarily disconnect. The size of file blocks is extremely
important to make our system useful in practice, affecting not
only the robustness and performance of our system, but also
the availability of files. The trade-off between many variables
can strongly affect the system; thus, an initial evaluation of
the prototype was made, which gave us insight about how
the system behavior changes as the variables change. In the
end a decision has to be made between increasing granularity
for availability by having more spread blocks and decreasing
granularity to gain more speed of backup and restore. Yet,
the latter depends too much on a single peer’s availability to
recover the file.

Following this discussion, the question on how to motivate
users to keep peers’ data remains open. Finding an answer
to this question would be one of the next steps of this
work, since it is very important to make sure that there is a
symbiotic relationship between users.

At this point we can concurrently handle peers joining
the network at any time; however, another future work is
to gracefully handle peers leaving the network. In other
words, handling a peer failure or a peer logging out of the
network temporarily. The current version does not detect the
disconnection, but a plan to attack this problem is in progress.

Another future work is redundancy of blocks: It is useful
to create a mechanism to redistribute some blocks to different
peers. This process would make the backup more available
by storing more than one copy of a block in different peers.
Thus, if a peer is not available at the time, another peer could
provide the requested block.

We conclude that a distributed file storage system is not
only safer (by not giving an entire copy to a single company)
but also is high in performance, given the many challenges
and trade-off decisions.

REFERENCES
[1] Batten C, Barr K, Saraf A, Trepetin S. pStore: A secure peer-to-peer

backup system. Unpublished report, MIT Laboratory for Computer
Science. 2001 Dec:130-9.

[2] Frank Dabek, M. Frans Kaashoek, David Karger, Robert Morris, Ion
Stoica, Wide-area cooperative storage with CFS. MIT Laboratory for
Computer Science.

[3] Dropbox website: https://dropbox.com

[4] Michael Piatek, Arvind Krishnamurthy, Arun Venkataramani, Richard
Yang David Zhang, Alexander Jaffe. Contracts: Practical Contribution
Incentives for P2P Live Streaming

