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Why a cat?
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● Networks are cool :-)

Why a cat?
Why a network?
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Facebook data center at Altoona, Iowa



Facebook data center
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● Around 90K servers
● Up to 10 Gbps point-to-point
● 7.68 Tbps uplink
● Non-trivial question

○ Can server [a] talk to [b]?

a
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● Linguistic approach to reason about end-to-end network behaviour 

● Relates to class: Kleene stars from hw2

● And many other concepts
○ denotational/axiomatic semantics

○ equational axioms/reasoning

○ properties of the program

● A grand theme
○ the structure of your definitions guides the structure of your reasoning

Why NetKAT?
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OpenFlow rule to 
configure network

Prove soundness and 
completeness

Big picture: how is NetKAT used?
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Network admin intent:
- can host [a] send packets to host [b]?

- drop all SSH traffic from [a] to [b]



Contents
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● Rodrigo: informal description to NetKAT and its constructs

● David: formal description
○ syntax, semantics, axioms, equational theory

● Nodir: put formal constructs to work
○ Prove soundness of NetKAT reachability equation



● Automaton: move packets from node to node along the links in topology
● PL people: use regular expressions: the language of finite automata

Network as an automaton to move packets
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● Automaton: move packets from node to node along the links in topology
● PL people: use regular expressions: the language of finite automata

● This modelling allows to use Kleene Algebra (KA) to reason about network 
properties formally

● KA: decades-old sounds and complete equational theory of regular exp.

Network as an automaton to move packets
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Iterative process: 



● Now we have KA to reason about network structure (global behavior)
● What about individual network components (switch)?

Network (as a collection of) predicates and actions
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Switch Predicate: is this SSH traffic?
Action: if yes drop else forward



Network (as a collection of) predicates and actions

● Now we have KA to reason about network structure (global behavior)
● What about individual network components (switch)?

● Hence we use
○ Kleene Algebra: for reasoning about network structure
○ Boolean Algebra: for reasoning about predicates that define switch behaviour

● These two are unified in Kleene algebra with tests (KAT) [3]
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Switch Predicate: is this SSH traffic?
Action: if yes drop else forward



● Example: suppose we want to implement two policies
○ Forwarding
○ Access Control

NetKAT syntax and semantics
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NetKAT syntax and semantics

● Policies: function from packets to sets of packets. Used to filter and 
modify packets

● Policy combinators
○ The union combinator (p + q) generates the union of the sets produced by applying 

each of p and q to the input packet
○ The sequential composition combinator (p·q) applies p to the input packet, then applies 

q to each packet in the resulting set, and takes the union of all of the resulting sets
● Armed with it, we can implement the forwarding policy
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● Packet is represented as a record with 

fields for standard headers such as
○ source address (src)

○ destination address (dst)

○ protocol type (typ)

● And two fields that identify the current 

location of the packet in the network
○ switch (sw)

○ port (pt)

NetKAT example: forwarding
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DST TYPSRC

DST TYPSRC SW PT



NetKAT example: forwarding

● A filter                takes any input 
packet        and yields the singleton 
set          if field     of        equals     , 
and       otherwise. 

● A modification                takes any 
input packet        and yields the 
singleton set             where         is 
the packet obtained from        by 
setting     to     .
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NetKAT example: forwarding

● We can define forwarding as
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● A policy that will block SSH traffic

NetKAT example: access control (AC)
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● A policy that will block SSH traffic

● Blocking only on Switch A

NetKAT example: access control (AC)
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NetKAT example: access control (AC)
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● A policy that will block SSH traffic

● Blocking only on Switch A

● Blocking only on Switch B



● How do we answer questions 
about the network?

○ Are non-SSH packets forwarded?
○ Are SSH packets dropped?
○ Are pAC, pA, and pB equivalent?

● Is inspecting the policies enough?

Topology in NetKAT
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Topology in NetKAT
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● How do we answer questions 
about the network?

○ Are non-SSH packets forwarded?
○ Are SSH packets dropped?
○ Are pAC, pA, and pB equivalent?

● Is inspecting the policies enough?
● No! The answers depend 

fundamentally on the network 
topology.



Topology in NetKAT

● A network topology is a directed 
graph with hosts and switches as 
nodes and links as edges

● Links are unidirectional
● Bidirectional links are pair of 

unidirectional links
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Topology in NetKAT
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● A network topology is a directed 
graph with hosts and switches as 
nodes and links as edges

● Links are unidirectional
● Bidirectional links are pair of 

unidirectional links
● The following policy models the 

internal links between switches A 
and B, and the links at the perimeter 
to hosts 1 and 2



● If host 1 sends a non-SSH packet to 
host 2, it is first processed by switch A, 
then the link between A and B, and 
finally by switch B

● NetKAT expression

● We can generalize the global behavior 
by using Kleene Star

Topology in NetKAT
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● It is often useful to restrict attention 
to packets that enter and exit the 
network at specified external 
locations e

Topology in NetKAT
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Topology in NetKAT

● It is often useful to restrict attention 
to packets that enter and exit the 
network at specified external 
locations e

● Restrict the policy to packets sent or 
received by one of the hosts
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Logical crossbar

Topology in NetKAT

● More generally, the input and output 
predicates may be distinct

● We call a network modeled in this 
way a logical crossbar, since it 
encodes end-to-end processing 
behavior
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Preliminaries: What is our notation?

- A packet pk is a record with fields f1...fk mapping to fixed-width integers n.
- Assume finite set of packet headers including Ethernet source and destination 

addresses, VLAN tag, IP source and destination addresses, TCP and UDP 
source and destination ports

28

IP TCPEthernet



Preliminaries: What is our notation?

- A packet pk is a record with fields f1...fk mapping to fixed-width integers n.
- Assume finite set of packet headers including Ethernet source and destination 

addresses, VLAN tag, IP source and destination addresses, TCP and UDP 
source and destination ports

- Include special fields for switch (sw) port (pt) and payload.
- Write pk.f for value in field f of pk, and pk [f := n] for the packet obtained from 

pk by updating field f to n.

IP TCPEthernet SW PT Payload
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Preliminaries: Packet Histories

- Packet history records the state of each packet as it travels from switch to 
switch

- A packet history h is a non-empty sequence of packets
- We write pk::<> to denote a history with one element, pk::h to denote the 

history constructed by prepending pk on to h, and <pk1 , . . . , pkn > for the 
history with elements pk1 to pkn

- We write H for the set of all histories, and Ƥ(H) for the powerset of H
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Syntax: Predicates & Policies
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Semantics
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- Every NetKAT predicate and policy 
denotes a function that takes history h and 
produces set of histories { h1…,hn}

- The empty set models dropping the 
packet (and its history)

- Singleton models modifying or forwarding 
the packet to a single location

- A set with multiple histories models 
modifying the packet in several ways or 
forwarding the packet to multiple locations



Equational Theory: Axioms
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Equational Theory: Axioms
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Equational Theory: Axioms
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Equational Theory: Axioms
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Equational Theory: Axioms
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Equational Theory: Axioms
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Equational Theory: Axioms
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Equational Theory: Axioms
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Equational Theory: Axioms
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Equational Theory Example: Access Control
- Policy PA filters SSH packets on switch A while PB filters SSH packets on 

switch B
- We can prove these are equivalent on SSH traffic going to left to right across 

our topology
- This is a simple form of code motion - relocating the filter from A to B
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Equational Theory Example: Access Control
- Policy PA filters SSH packets on switch A while PB filters SSH packets on 

switch B
- We can prove these are equivalent on SSH traffic going to left to right across 

our topology
- This is a simple form of code motion - relocating the filter from A to B
- The first lemma of the proof shows sequencing a predicate that matches 

switch A with a predicate that matches switch B will drop all packets 
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Equational Theory Example: Access Control
- We use the logical crossbar encoding with predicates
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Equational Theory Example: Access Control
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Equational Theory Example: Access Control
- Next, we’ll see lemma 2 of the proof
- Lemma 2 proves sequential composition of an arbitrary policy q, the predicate          

aA, topology t, and an output predicate is equivalent to the policy that drops all 
packets 
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Equational Theory Example: Access Control
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Equational Theory Example: Access Control
- Finally, we’ll see lemma 3 of the proof
- Lemma 3 proves PA and PB both drop SSH traffic going from host 1 to host 2
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NetKAT at work: useful properties

● Reachability properties
○ Can host [a] send packets to host [b]?

● Traffic isolation
○ Policies for particular network traffic does not impact other traffic

● Compiler correctness
○ Ensure NetKAT policies correctly translated to network rules
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Reachability: some interesting questions
● Can host [a] send packets to host [b]?
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Reachability: some interesting questions
● Can host [a] send packets to host [b]?

● Are managed hosts kept separate from unmanaged hosts?
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● Can host [a] send packets to host [b]?

● Are managed hosts kept separate from unmanaged hosts?

● Does all untrusted traffic traverse the intrusion detection system (IDS)?

Reachability: some interesting questions
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Reachability: some interesting questions
● Can host [a] send packets to host [b]?

● Are managed hosts kept separate from unmanaged hosts?

● Does all untrusted traffic traverse the intrusion detection system (IDS)?
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…

…

…

Reachability: can host [a] send packets to host [b]?

a

a

a b

b

b
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a b

Reachability: can host [a] send packets to host [b]?

…

…

…

a

a

a b

b

b
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Reachability: can host [a] 
send packets to host [b]? a b
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Behaviour of an entire network (crossbar model)

a b

Reachability: can host [a] 
send packets to host [b]?
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Behaviour of an entire network (crossbar model)

a b

dup records a packet and 
lets us reason about 

behaviour of each individual hop

Reachability: can host [a] 
send packets to host [b]?
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Behaviour of an entire network (crossbar model)

a b

dup records a packet and 
lets us reason about 

behaviour of each individual hop

Reachability: can host [a] 
send packets to host [b]?

60

prepending a filters packets 
with source [a] and 

b filters packets with destination [b]



a b

Reachability: can host [a] 
send packets to host [b]?
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prepending a filters packets 
with source [a] and 

b filters packets with destination [b]

How do we know that this is correct?



a b

Reachability: can host [a] 
send packets to host [b]?
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● Prove correctness
● Define reachability: show semantic notion
● Translate

○ denotational semantics of reachability, and 
○ below equation into the language model

● Equations are easily related to one another in the language model

prepending a filters packets 
with source [a] and 

b filters packets with destination [b]



NetKAT language model
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Set of complete assignments

Set of complete atoms (tests)

3 5
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NetKAT language model I is a guarded string
NetKAT language model consists of regular 
subsets of a restricted class of guarded strings I.



Intuition: [a] can talk to [a] if there is a trace
where packet’s first hop is [a] last hop is [b] 

a b

Reachability: can host [a] 
send packets to host [b]?
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a b

Reachability: can host [a] 
send packets to host [b]?
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a b

Reachability: can host [a] 
send packets to host [b]?
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a b

Reachability: can host [a] 
send packets to host [b]?
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a b

Reachability: can host [a] 
send packets to host [b]?
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Also translate each term in the semantic definition 
of reachability into the language model

a b

Reachability: can host [a] 
send packets to host [b]?

70



Also translate each term in the semantic definition 
of reachability into the language model

a b

Reachability: can host [a] 
send packets to host [b]?
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a b

Reachability: can host [a] 
send packets to host [b]?
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a b

● Define reachability: show semantic notion
● Translate

○ denotational semantics of reachability, and 
○ below equation into the language model

● Show NetKAT equation is equivalent to the reachability definition
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To prove correctness



● Showed how Kleene algebra with tests (KAT) applies to networks

● Formally described NetKAT syntax, semantics, and axioms

● Applied equational theory in NetKAT

● Gave examples of NetKAT equation to
○ drop SSH traffic between two nodes

○ check reachability between two nodes

● Formally showed correctness of the reachability equation

Takeaways
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