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e Networks are cool :-)

!lrr;"rq ”

b

Facebook data center at Altoona, lowa




Facebook data center

Around 90K servers
Up to 10 Gbps point-to-point
7.68 Tbps uplink

Non-trivial question
o Can server [a] talk to [b]?




Why NetKAT?

e Linguistic approach to reason about end-to-end network behaviour
e Relates to class: Kleene stars from hw2  stars(g(oox)*al)

e And many other concepts

o denotational/axiomatic semantics
o equational axioms/reasoning
o properties of the program

e A grand theme

o the structure of your definitions guides the structure of your reasoning



Big picture: how is NetKAT used?

OpenFlow rule to
configure network
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Contents

e Rodrigo: informal description to NetKAT and its constructs

e David: formal description
o syntax, semantics, axioms, equational theory
e Nodir: put formal constructs to work

o Prove soundness of NetKAT reachability equation



Network as an automaton to move packets

e Automaton: move packets from node to node along the links in topology
e PL people: use regular expressions: the language of finite automata
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lterative process: (p - t)*




Network as an automaton to move packets

e Automaton: move packets from node to node along the links in topology
e PL people: use regular expressions: the Ianguage of finite automata

P q
v <’
. q e e o o
Pp+qg+--)

lterative process: (p - t)*

e This modelling allows to use Kleene Algebra (KA) to reason about network
properties formally
e KA: decades-old sounds and complete equational theory of regular exp.



Network (as a collection of) predicates and actions

e Now we have KA to reason about network structure (global behavior)
e \What about individual network components (switch)?

Predicate: is this SSH traffic?

Switch —R 8g. g~ Action: if yes drop else forward

10



Network (as a collection of) predicates and actions

e Now we have KA to reason about network structure (global behavior)
e \What about individual network components (switch)?

il
" -'.-'F'F"l-""'?:'_r .

Switch —@* . Predicate:is this SSH traffic?

Action: if yes drop else forward

e Hence we use
o Kleene Algebra: for reasoning about network structure
o Boolean Algebra: for reasoning about predicates that define switch behaviour

e These two are unified in Kleene algebra with tests (KAT) [3]
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NetKAT syntax and semantics

e Example: suppose we want to implement two policies

o Forwarding
o Access Control

12



NetKAT syntax and semantics

Policies: function from packets to sets of packets. Used to filter and
modify packets

Policy combinators
o The union combinator (p + q) generates the union of the sets produced by applying
each of p and g to the input packet
o The sequential composition combinator (p-q) applies p to the input packet, then applies
g to each packet in the resulting set, and takes the union of all of the resulting sets

Armed with it, we can implement the forwarding policy

13



NetKAT example: forwarding

e Packet is represented as a record with

fields for standard headers such as ' e | Switch A Switch B Host 2

o source address (src)

o destination address (dst) SRC DST TYP

o protocol type (typ)
e And two fields that identify the current

location of the packet in the network

switch
°  switch (sw) SRC DST TYP SW PT

o port (pt)



NetKAT example: forwarding

o Afilter f = n takes any input
packet pk and yields the singleton
set{pk}iffield f of pk equals 1,
and { } otherwise.

e A modification (f < n) takes any
input packet pk and yields the
singleton set {pk’} where pk’ is
the packet obtained from pk by
setting f to n.

Host 1

Host 2
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NetKAT example: forwarding

e \We can define forwarding as

16



NetKAT example: access control (AC)

e A policy that will block SSH traffic
A

pac = ~(typ= SSH) - p

Host 2

17



NetKAT example: access control (AC)

e A policy that will block SSH traffic
A

pac = —(typ = SSH) - p rewr =

e Blocking only on Switch A

pa 2 (sw=A-—(typ=SSH) - p) + (sw = B - p)

18



NetKAT example: access control (AC)

e A policy that will block SSH traffic
A

pAC p— ﬁ(typ — SSH) . p H_{:s_t_l Switch A i

e Blocking only on Switch A
A
pa = (sw=A-—(typ=SSH) p)+ (sw= B p)
e Blocking only on Switch B

pp = (sw=A-p)+ (sw= B ~(typ = SSH) - p)

19



Topology in NetKAT

e How do we answer questions

about the network?
o Are non-SSH packets forwarded?
o Are SSH packets dropped?
o Arep,. P, and p; equivalent?

Switch A Switch B Host 2

Host 1

pac 2 —(typ = SSH) -p

e Isinspecting the policies enough? |

pa=(sw=A-—(typ=SSH)-p)+ (sw= B -p)
pp = (sw=A-p)+ (sw =B ~(typ = SSH) - p)

20



Topology in NetKAT

e How do we answer questions

about the network?
o Are non-SSH packets forwarded?
o Are SSH packets dropped? A
o Arep,. p, and p, equivalent? pac = (typ=SSH) -p

e Isinspecting the policies enough? |
e No! The answers depend pa=(sw=A-=(typ=SSH) -p)+ (sw= B -p)

fundamentally on the network  pp 2 (sw=A-p)+ (sw=DB-—(typ=SSH) - p)
topology.

Switch A Switch B Host 2

Host 1

21



Topology in NetKAT

e A network topology is a directed
graph with hosts and switches as
nodes and links as edges

e Links are unidirectional

e Bidirectional links are pair of
unidirectional links

22



Topology in NetKAT

e A network topology is a directed
graph with hosts and switches as " — A e £ e
nodes and links as edges

e Links are unidirectional

e Bidirectional links are pair of
unidirectional links

e The following policy models the t=(sw=A-pt=2.-sw« B-pt+ 1)+
internal links between switches A (Wl = LBl Ao B

(sw=A -pt=1)+
and B, and the links at the perimeter (sw=B-pt=2)
to hosts 1 and 2




Topology in NetKAT

e If host 1 sends a non-SSH packet to
host 2, it is first processed by switch A,
then the link between A and B, and
finally by switch B

e NetKAT expression pac -t -pac

e \We can generalize the global behavior
by using Kleene Star

(pac - 1)

Host 2

24



Topology in NetKAT

e |tis often useful to restrict attention
to packets that enter and exit the —tle S et
network at specified external
locations e

eé(sw:A-pt:1)+(sw:B-pt:2)

Host 2

25



Topology in NetKAT

e |tis often useful to restrict attention & 8
to packets that enter and exit the —ll A Switch B
network at specified external
locations e

eé(sw:A-pt:1)+(sw:B-pt:2)
e Restrict the policy to packets sent or

received by one of the hosts

A *
pnet:€°(pAC't) €

Host 2

26



Topology in NetKAT

e More generally, the input and output
predicates may be distinct =

Switch A Switch B Host 2

in - (p-t)* - out

e \We call a network modeled in this
way a logical crossbar, since it
encodes end-to-end processing

behavior Logical crossbar



Preliminaries: What is our notation?

Ethernet P TCP

- A packet pk is a record with fields f....f, mapping to fixed-width integers n.

- Assume finite set of packet headers including Ethernet source and destination
addresses, VLAN tag, IP source and destination addresses, TCP and UDP
source and destination ports



Preliminaries: What is our notation?

Ethernet IP TCP SW PT Payload

- A packet pk is a record with fields f....f, mapping to fixed-width integers n.

- Assume finite set of packet headers including Ethernet source and destination
addresses, VLAN tag, IP source and destination addresses, TCP and UDP
source and destination ports

- Include special fields for switch (sw) port (pt) and payload.

- Write pk.f for value in field f of pk, and pk [f := n] for the packet obtained from
pk by updating field fto n.

29



Preliminaries: Packet Histories

Ethernet IP TCP SW PT Payload

- Packet history records the state of each packet as it travels from switch to
switch

- A packet history h is a non-empty sequence of packets

- We write pk::<> to denote a history with one element, pk::h to denote the
history constructed by prepending pk on to h, and <pk, , .. ., pk_ > for the
history with elements pk, to pk_

- We write H for the set of all histories, and P(H) for the powerset of H

30



Syntax: Predicates & Policies

Predicates

@, 9u=1

0
f=n
a-+b
a-b

—l

Identity
Drop

Test
Disjunction
Conjunction
Negation

Policies
p.qi=a
f+—n
pTrq
Pq

dup

Filter

Modification

Union

Sequential composition
Kleene star
Duplication

31



Semantics

- Every NetKAT predicate and policy [pl € H — P(H)
denotes a function that takes history h and [1] k£ {h}
produces set of histories { h,. ..,hn} [0] 2 {}
- The empty set models dropping the _ .y & J{pk:h} ifpk.f=n
pty pping =l (bt & { {2 TERT

packet (and its history) [-~a] k2 {h}\ ([a] h)
- Singleton models modifying or forwarding If « n] (pk=h) 2 {pk[f := n]:h)

the packet to a single location lp+q] h2[p] hU[q] h
- A set with multiple histories models [p-q] R2([p] * [q]) ~
modifying the packet in several ways or [p*] 2 U, F' R

where F' h £ {h} and F**' h £ ([p] e F*) h

forwarding the packet to multiple locations
[dup] (pk::h) £ {pk::(pk::h)}

32



Equational Theory: Axioms

Kleene Algebra Axioms Additional Boolean Algebra Axioms
p+g+r)=(p+q +r KA-PLUS-AssOC a+(b-e)=(a+b)-(a+e) BA-PLUS-DIST
p+g=q+p KA-PLUS-COMM a+1=1 BA-PLUS-0ONE
p+0=p KA-PLUS-ZERO a+-a=1 BA-ExcL-MiD
p+p= KA-PLUS-IDEM a-b=b-a BA-SEQ-CoMM
p-(g-r)=(p-q)-1 KA-SEQ-AssOC a--a=0 BA-CONTRA
l:p=p KA-ONE-SEQ a-d=qa BA-SEQ-IDEM
p:1l=p KA-SEQ-ONE
p-lg+ri=p-q+p-r KA-SEQ-DIST-L
(p+qg)-r=p-vr+gqg-r KA-SEQ-DIST-R
0-p=0 KA-ZERO-SEQ
p-0=0 KA-SEQ-ZERO
1+p-p*=p* KA-UNROLL-L
g+p-r<r=p*-g<r KA-LFp-L
1+p*-p=p* KA-UNROLL-R
pt+g-r<g=p-r*<gq KA-LFP-R



Equational Theory: Axioms

Kleene Algebra Axioms Additional Boolean Algebra Axioms
p+lg+r)=(p+qg +r KA-PLUS-AssoC a+(b-e)=(a+b)-(a+e) BA-PLUS-DIST
p+g=q+p KA-PLUS-COMM a+1=1 BA-PLUS-0ONE
p+0=p KA-PLUS-ZERO a+-a=1 BA-ExcL-MiD
p+p= KA-PLUS-IDEM a-b=b-a BA-SEQ-CoMM
p-(g-r)=(p-q)-1 KA-SEQ-AssOC a--a=0 BA-CONTRA
l:p=p KA-ONE-SEQ a-d=a BA-SEQ-IDEM
p:1l=p KA-SEQ-ONE
p-lg+ri=p-q+p-r KA-SEQ-DIST-L
(p+qg)-r=p-vr+gqg-r KA-SEQ-DIST-R
0-p=0 KA-ZERO-SEQ
p-0=0 KA-SEQ-ZERO
1+p-p*=p* KA-UNROLL-L
g+p-r<r=p*-g<r KA-LFp-L
1+p*-p=p* KA-UNROLL-R
pt+qg-r<g=p-r*<gq KA-LFp-R



Equational Theory:

KAT Theorems

KAT-INVARIANT
KAT-5LIDING
KAT-DENESTING
KAT-COMMUTE

Axioms

Ifa-p=p-athena-p*=a-(p-a)*
p-(g-p)*=(p-q)* p

p*-{g-p7)* = (p+4)*
Ifforallatomicring.x-p=p-xtheng-p=p-q

35



Equational Theory: Axioms

Packet Algebra Axioms

fn-f"+n"=f+«n"-f+n, iff#f PA-Mob-Mob-ComM

fen-f'=n"=f =n"-f<mn,iff #f PA-MoD-FILTER-COMM
dup-f=n=f=n-dup PA-DUP-FILTER-COMM

36



Equational Theory: Axioms

Packet Algebra Axioms
fn-f"+n"=f+«n"-f+n, iff#f PA-Mob-Mob-ComM
fen-f'=n"=f =n"-f<mn,iff #f PA-MoD-FILTER-COMM
dup-f=n=f=n-dup PA-DUP-FILTER-COMM
f+n-f=n=f+n PA-MoD-FILTER
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Equational Theory: Axioms

Packet Algebra Axioms
fn-f"+n"=f+«n"-f+n, iff#f PA-Mob-Mob-ComM

fen-f'=n"=f =n"-f<mn,iff #f PA-MoD-FILTER-COMM
dup-f=n=f=n-dup PA-DUP-FILTER-COMM
f+n-f=n=f+n PA-MoD-FILTER

f=n-f+n=f=n PA-FILTER-MOD

38



Equational Theory: Axioms

Packet Algebra Axioms
fn-f"+n"=f+«n"-f+n, iff#f PA-Mob-Mob-ComM
fen-f'=n"=f =n"-f<mn,iff #f PA-MoD-FILTER-COMM

dup-f=n=f=n-dup PA-DUP-FILTER-COMM
f+n-f=n=f+n PA-MoD-FILTER
f=n-f«n=f=n PA-FILTER-MOD

fen<fen'=fen PA-MoD-MoD

39



Equational Theory: Axioms

Packet Algebra Axioms
fn-f"+n"=f+«n"-f+n, iff#f PA-Mob-Mob-ComM
fen-f'=n"=f =n"-f<mn,iff #f PA-MoD-FILTER-COMM

dup-f=n=f=n-dup PA-DUP-FILTER-COMM
f+n-f=n=f+n PA-MoD-FILTER
f=n-f«n=f=n PA-FILTER-MOD
fenfeen'=fen PA-MoD-MoD

f:ﬂrf—n’_ﬂ ltn#n PA-CONTRA

40



Equational Theory: Axioms

Packet Algebra Axioms
fn-f"+n"=f+«n"-f+n, iff#f PA-Mob-Mob-ComM
fen-f'=n"=f =n"-f<mn,iff #f PA-MoD-FILTER-COMM

dup-f=n=f=n-dup PA-DUP-FILTER-COMM
f+n-f=n=f+n PA-MoD-FILTER
f=n-f«n=f=n PA-FILTER-MOD
fenfeen'=fen PA-MoD-MoD
f=n-f=n'=0,ifn#n PA-CONTRA

Zf =g3=1 PA-MATCH-ALL

i

41



Equational Theory Example: Access Control

- Policy P, filters SSH packets on switch A while P filters SSH packets on

switch B
- We can prove these are equivalent on SSH traffic going to left to right across

our topology
- This is a simple form of code motion - relocating the filter from A to B

42



Equational Theory Example: Access Control

- Policy P, filters SSH packets on switch A while P filters SSH packets on
switch B

- We can prove these are equivalent on SSH traffic going to left to right across
our topology

- This is a simple form of code motion - relocating the filter from A to B

- The first lemma of the proof shows sequencing a predicate that matches
switch A with a predicate that matches switch B will drop all packets

u—__ == Switch A Switch B Host 2

43



Equational Theory Example: Access Control

- We use the logical crossbar encoding with predicates

in2(sw=A-pt=1)
out = (sw= B - pt = 2)

44



Equational Theory Example: Access Control

Lemmal. in-ag-g=0

Proof.
in-ag-q
= { definition in }
g+ 1 - ag - q
= { KAT-COMMUTE }
@A ag- ay-q
= { PA-CONTRA }
0-a;-q
= { KA-ZERO-SEQ }
0 O
in=(sw=A-pt=1) as £ (sw=A) a £ (pt=1) @ﬁ;@gféq
it etisigteat) ap £ (sw = B) az £ (pt = 2) = Switch A Switch B " Host2

Host 1



Equational Theory Example: Access Control

- Next, we’ll see lemma 2 of the proof

- Lemma 2 proves sequential composition of an arbitrary policy q, the predicate
a,, topology t, and an output predicate is equivalent to the policy that drops all
packets

S Switch A Switch B Host 2

46



Equational Theory Example: Access Control

Lemma?l g-aa-ft-out=10 = { PA-Mop-FILTER }
Proaf. Q404 do- Mgy -0 ag - a2 +
-1 out -84 -ilg - -Ma -8 -M2-dp -z +
= { definition ¢ } q-aG4-ay -8 -ag-az+

g+ a4 - ag - az - ag - a2

= { KAT-COMMUTE }
a4 -a4-daz-mg-m -ag - 41 - az +
g-aa-ag- -y -Ma-Ma-84 -85 as +
- a4 - a4 - ag - 41 - az +
g-a4-8g- a3 - ag - dp

= { PA-CONTRA }
g-G4-a4-Gy-mMmg-m -ag-0+
g-ag-ap-ay-ma-mp-0:a;+
g-a4q-04-ag- -0+
q-0-a2-ap- @

= { KA-SEQ-ZERO, KA-ZERD-SEQ }

g-aa-(aq-02-mg-m +
4B 61 * M4 - M2 +
da - a1 +
ap - az) - out
= { KA-SEQ-DisT-L, KA-SEQ-D1sT-R }
- a4 - a4 - az2 - mg - m1 - out +
(- - ag -y - Mg - Mo - out +
a4 - a4 - ap - out +
q-iq - g - - out
= { definition ouf }
g-a4-a4-dz Mg My - dg - G2 +
J-a4-ag-a1 -4 -m2-ag - 02 +

4-Ga-@a-a1-0p- a2+ 04+0+040
= { KA-PLUS-IDEM }
!'_l"rIA C il -
. 0
En%{SW:Apt:]_) a;‘%(SW:_A}
outS(ev=B-pt=1) g &(ew=B)

— Switch A Switch B Host 2



Equational Theory Example: Access Control

- Finally, we’ll see lemma 3 of the proof
- Lemma 3 proves P, and P both drop SSH traffic going from host 1 to host 2

S Switch A Switch B Host 2

48



Lemma 3. in -SSH- (ps-1)*- out = in - SSH: (pp - £)*- out
Proof.

in - SSH - (pa - t)* - out
= { KAT-INVARIANT, definition p4 }
in - SSH - ((a4 - 7SSH-p + ap - p) - t - SSH)* - out
= { KA-SEQ-DIST-R }
in-SSH- (a4 -—-SSH-p-t-S8H+ ag - p-t-SSH)* - out
= { KAT-CoMMUTE }
in-SsH-(aa-—-SSH-SSH-p-t+ ag-p-t-SsH)* - out
= { BA-CONTRA }
in-55H-(a4-0-p-t+ ap-p-t-55H)* - out
= { KA-SEQ-ZERO/ZERD-SEQ, KA-PLUS-CoMM, KA-PLUS-ZERO }
in-SSH-(ag - p-1-SSH)* - out
= { KA-UxroLL-L }
in-SSH-(1+(ag-p-t-8SH) - (ag - p-t-SSH)*) - ouf
= { KA-SEQ-DIsT-L, KA-SEQ-DIsT-R, definition out }
in - 58H - ag - 02 +
in-8SH-ap-p-1-SSH-(ag-p-1-5SH)*: ap - a2
= { KAT-COMMUTE }
in-ag - S5H - a2 +
in-ap-SSH-p-1-SSH-(ag-p-t-SSH)* - ag- @
={Lemmal }
0+0
= { KA-PLus-IDEM }
0

= { KA-PLus-IDEM }
0+0
={Lemma l, Lemma2 }
in - ag - 55H - aa +
in-SSH-(aq-p-1-SSH)*-p-8SH- aq -t - out
= { KAT-CoMMUTE, definition out }
in - 55H - out +
in-SSH-(a4-p-t-SSH)*- a4 -p-1-SSH- out
= { KA-SEQ-DIST-L. KA-SEQ-DIST-R }
in-SSH- (14 (aa-p-t-SSH)*- (a4 p-t-SSH)) - out
= { KA-UxroLL-R }
ift - SSH - (@4 - p-1 - SSH)* - out
= { KA-SEQ-ZERO/ZERD-SEQ, KA-PLUS-ZERO }
in-SsH-(aq-p-t-SSH+ag-0-p-t)* - out
= { BA-CONTRA }
in-SSH-(aa-p-t-SSH+ ag - -SSH - SSH-p - 1)* - out
= { KAT-COMMUTE }
in-SSH:(a4-p-t-SSH+ ag-—-SSH-p-1:SSH)* - out
= { KA-SEQ-DIsT-R }
in-SsH- ((aa-p+ ag - -5SH-p) - & - SSH)™ - out
= { KAT-INvARIANT, definition pg }
in - SSH- (pp - t)* - out

49



NetKAT at work: useful properties

e Reachability properties

o Can host [a] send packets to host [b]?

e Traffic isolation
o Policies for particular network traffic does not impact other traffic

e Compiler correctness
o Ensure NetKAT policies correctly translated to network rules

50



Reachability: some interesting questions

e Can host [a] send packets to host [b]?

51



Reachability: some interesting questions

Can host [a] send packets to host [b]?

- —

Are managed hosts kept separate from unmanaged hosts?

52



Reachability: some interesting questions

e Can host [a] send packets to host [b]?

e Are managed hosts kept separate from unmanaged hosts?

e Does all untrusted traffic traverse the intrusion detection system (IDS)?

|]I‘l ]I‘I
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Reachability: some interesting questions

e Can host [a] send packets to host [b]?

e - o

e Are managed hosts kept separate from unmanaged hosts?

e Does all untrusted traffic traverse the intrusion detection system (IDS)?

> < <
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Reachability: can host [a] send packets to host [b]?

77 IR 77
a b

- o>

S ‘

7 1< i
b

/ﬁv
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Reachability: can host [a] send packets to host [b]?

a b

= e
a \@’/

O'Ill'l

o ]I*l
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Reachabillity: can host [a]
send packets to host [b]?

57



Reachability: can host [a] B
send packets to host [b]? a b

m - (p : t)* - out  Behaviour of an entire network (crossbar model)

58



Reachability: can host [a] B
send packets to host [b]? a b

m - (p : t)* - out  Behaviour of an entire network (crossbar model)

dup records a packet and
lets us reason about
behaviour of each individual hop

in -dup - (p-t-dup)*- out
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Reachabillity: can host [a] B =
send packets to host [b]? a b

m - (p : t)* - out  Behaviour of an entire network (crossbar model)

dup records a packet and
lets us reason about
behaviour of each individual hop

in -dup - (p-t-dup)*- out

prepending a filters packets
a-dup-(p-t-dup)*-b#£0 with source [a] and

b filters packets with destination [b]

60



Reachabillity: can host [a]
send packets to host [b]?

How do we know that this is correct?

a-dup-(p-t-dup)*-b#£0

prepending a filters packets
with source [a] and
b filters packets with destination [b]

61



Reachability: can host [a] o S
send packets to host [b]? a b

e Prove correctness
e Define reachability: show semantic notion

e TJranslate

o denotational semantics of reachability, and
o Dbelow equation into the language model

e Equations are easily related to one another in the language model

prepending a filters packets
a-dup-(p-t-dup)*-b#0 with source [a] and

b filters packets with destination [b]

62



Policies

NetKAT language model pgi=a  Filler
| f <+ n Modification
Reduced NetKAT syntax | p+q Union
Complete assignments A fiengofo e ne | p-gq Sequential composition
E
Complete tests «,8 = fi=n1---fr = nk | jS" gfé'ﬁ';‘fé .'s'i‘f.’”‘
Reduced terms p,q 1=« Complete test | up HpHCanon
| =« Complete assignment
| p+q Union Packet Algebra Axioms
| p-q S‘Eq"‘ence fen-flen=f «na' - f+n,iff #f PA-Mob-Mop-CoMm
| g geeln.e .l fen-fl=n"=f=n"-f<mn,iff£f PA-Mob-FILTER-COMM
| dup Upasaion 8] dup-f=n=f=mn-dup PA-DUP-FILTER-COMM
Simplified axioms for A and P 1 f+n-f=n=f+n PA-MoD-FILTER
= 5 s 6 » 8 = diipe =1 2 f=n-fen=f=n PA-FILTER-MoOD
- = ch Xaja ’ W fn-fen=Ffen PA-MoD-MoD
—— ol a4 Bl f=n-f=n'=0,ifn#n PA-CONTRA
M o=c-m. EET-T =T Mo -5=0,a7p 5 Y. I=i=1 PA-MATCH-ALL
Regular interpretation: R(p) C (IT + A + dup)* i
R(m) = {=} Set of complete atoms (tests)
R(p+ q) = R(p) U R(q)
R(a) = {a} Set of complete assignments

R(p-q) ={zy|z € R(p),y € R(q)}
R(dup) = {dup}
R(p*) = [J RO")

n>0
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NetKAT language model

Reduced NetKAT syntax

Complete assignments T fieni-- fong

> 1>

Complete tests  «, 3 fi=ni-- fro =ng

Reduced terms p,q 1=« Complete test
| =« Complete assignment
| p+q Union
| p-q Sequence
| p* Kleene star
| dup  Duplication

Simplified axioms for A and P

T=7-Qn a-dup=dup-a Na=1,

a=a- Ty - =a a-B=0,a#p
Regular interpretation: R(p) C (IT + A + dup)*
R(r) = {n}
R(p + q) = R(p) U R(q)
R(a) = {a}

R(p-q) ={zy|z € R(p),y € R(q)}
R(dup) = {dup}
R(p*) = [J RO")

n>0

| is a guarded string
NetKAT language model consists of regular

Language model: G(p) C I = A- (Il - dup)* - II

G(r)={{a -7|ae€ A}

n>0

Guarded concatenation

’ .
y _Ja-p-qg-m ifB=oq
BEE TRk G {undeﬁned if B =

AoB={poq|peA qeB}CI

subsets of a restricted class of guarded strings |.
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Reachabillity: can host [a] B =
send packets to host [b]? a b

Definition 2 (Reachability). We say b is reachable from a if and
only if there exists a trace

(pk1,- -, pk,) € mg([dup- (p-¢-dup)*])
such that [a] {pk,,) = {(pk,)} and [b] {pk,) = {(pk:)}.

Intuition: [a] can talk to [a] if there is a trace
where packet’s first hop is [a] last hop is [b]
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Reachabillity: can host [a] B =
send packets to host [b]? a b

Theorem 4 (Reachability Correctness). For predicates a and b,
policy p, and topology t, a - dup - (p - t - dup)™*- b £ 0, if and only
if b is reachable from a.
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Reachabillity: can host [a]
send packets to host [b]?

Theorem 4 (Reachability Correctness). For predicates a and b,
policy p, and topology t, a - dup - (p -t - dup)*- b # 0, if and only
if b is reachable from a.
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Reachabillity: can host [a] B =
send packets to host [b]? a b

Proof. We translate the NetKAT equation into the language model:

a-dup-(p-t-dup)*-bZ0
= do,mp, -, M.
-7y -dup---dup-m € G(a-dup-(p-t-dup)*-b)

Theorem 4 (Reachability Correctness). For predicates a and b,
policy p, and topology t,|a - dup - (p - t - dup)™ - b # 0} if and only
if b is reachable from a.
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Reachabillity: can host [a]
send packets to host [b]?

Proof. We translate the NetKAT equation into the language model:

a-dup-(p-t-dup)*-b#0
= da,mp, -, 7.
| a-mp-dup---dup-m1 € G(a-dup- (p-t-dup)*-b) |
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Reachabillity: can host [a] B =
send packets to host [b]? a b

Also translate each term in the|semantic definition
of reachability into the language model

Elpkla"'apk

(pky, - pn> rng( [dup - (p - t - dup)*]),
[a] (pk,) = {(pk,)} and

[6] (pk > {(pk.)}

Proof. We translate the NetKAT equation into the language model: Definition 2 (Reachability). We say b is reachable from a if and
d (p-t-dup)* b0 only if there exists a trace
a - up (p-t- up .

= 3Ja,mp, -, (pk1,--- ,pk,) € rng([dup - (p-t - dup)*])
[ dup---dup-m € Gla-dup-(p-t-dup)*-b) | such that [a] (pk,,) = {(pk,)} and [B] (phy) = {(pk1)}.




Reachabillity: can host [a] B =
send packets to host [b]? a b

Also translate each term in the|semantic definition
of reachability into the language model

Elpkla e 7pk

(pk,, - ,pk,) € mg([dup- (p- ¢ - dup)*]),
[a] (pk ) = {(pk,)} and
[6] (pk1) = {(pk1)}

= dri, - ,wm.
Qnt Ty - dup---dup -7 € G(dup- (p-t-dup)*),
Qrt 7r € G(a) and
4 - /1 7T1 - G(b)

Proof. We translate the NetK AT equation into the language model: Definition 2 (Reachability). We say b is reachable from a if and
only if there exists a trace
a-dup-(p-t-dup)*-b#0
= 3Ja,mp, -, (pk1,--- ,pk,) € rng([dup - (p-t - dup)*])
| m-dup--dup-m € Gla-dup-(p-t-dup)”-b) | such that [a] (pk.,) = {(pk,)} and [b] (pk) = {(pk,)}.




Reachability: can host [a] B

send packets to host [b]? a b
Apky, -+ 50k, B _ ;
Z()pkl, :Dpkn> € rg([dup - (p -t - dup)*]), To prove soundness we let « = ar,, and m = n to show that if
la] (pk,) = {(pk,)} and - Tp-dup---dup-m € G(a-dup-(p-t-dup)*-b)
. [[i)]] (pky) = {(pk)} then
: 7T1, = ,ﬂm. 2

Qnt Ty - dup---dup - 71 € G(dup - (p -t - dup)*),
Qnr Ty, € G(a) and
o - € G(b)

Qrr - Ty -dup -+ -dup - w1 € G(dup - (p - t - dup)®)

which holds by definition of ¢. The proof of completeness follows

by a similar argument. O

Proof. We translate the NetKAT equation into the language model:

a-dup-(p-t-dup)*-b#0
= da,mp, -, 7.
| a-ﬂ'n-dup---dup-ﬂ'lEG(a-dup-(p-t-dup)*-b)|




To prove correctness

e Define reachability: show semantic notion

e Translate

o denotational semantics of reachability, and
o below equation into the language model

e Show NetKAT equation is equivalent to the reachability definition
a-dup-(p-t-dup)*-b#0

Definition 2 (Reachability). We say b is reachable from a if and
only if there exists a trace

(Pky,- -+ ,pk,) € mg([dup - (p-t-dup)*])
such that [a] (pk,,) = {(pk,)} and [b] (pk,) = {{pk,)}.



Takeaways

e Showed how Kleene algebra with tests (KAT) applies to networks
e Formally described NetKAT syntax, semantics, and axioms
e Applied equational theory in NetKAT

e Gave examples of NetKAT equation to

o drop SSH traffic between two nodes

o check reachability between two nodes

e Formally showed correctness of the reachability equation
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