
NetKAT:
Semantic Foundations for Networks

By Carolyn Jane Anderson et al. at POPL’14
Symposium on Principles of Programming Languages

CPSC 509: Programming Language Principles
Class presentation by David Johnson, Rodrigo Araujo and Nodir Kodirov

December 2, 2016
1

Why a cat?

2

● Networks are cool :-)

Why a cat?
Why a network?

3
Facebook data center at Altoona, Iowa

Facebook data center

b

● Around 90K servers
● Up to 10 Gbps point-to-point
● 7.68 Tbps uplink
● Non-trivial question

○ Can server [a] talk to [b]?

a
4

● Linguistic approach to reason about end-to-end network behaviour

● Relates to class: Kleene stars from hw2

● And many other concepts
○ denotational/axiomatic semantics

○ equational axioms/reasoning

○ properties of the program

● A grand theme
○ the structure of your definitions guides the structure of your reasoning

Why NetKAT?

5

OpenFlow rule to
configure network

Prove soundness and
completeness

Big picture: how is NetKAT used?

6

Network admin intent:
- can host [a] send packets to host [b]?

- drop all SSH traffic from [a] to [b]

Contents

7

● Rodrigo: informal description to NetKAT and its constructs

● David: formal description
○ syntax, semantics, axioms, equational theory

● Nodir: put formal constructs to work
○ Prove soundness of NetKAT reachability equation

● Automaton: move packets from node to node along the links in topology
● PL people: use regular expressions: the language of finite automata

Network as an automaton to move packets

8

p q p

q

Iterative process:

● Automaton: move packets from node to node along the links in topology
● PL people: use regular expressions: the language of finite automata

● This modelling allows to use Kleene Algebra (KA) to reason about network
properties formally

● KA: decades-old sounds and complete equational theory of regular exp.

Network as an automaton to move packets

9

p q p

q

Iterative process:

● Now we have KA to reason about network structure (global behavior)
● What about individual network components (switch)?

Network (as a collection of) predicates and actions

10

Switch Predicate: is this SSH traffic?
Action: if yes drop else forward

Network (as a collection of) predicates and actions

● Now we have KA to reason about network structure (global behavior)
● What about individual network components (switch)?

● Hence we use
○ Kleene Algebra: for reasoning about network structure
○ Boolean Algebra: for reasoning about predicates that define switch behaviour

● These two are unified in Kleene algebra with tests (KAT) [3]

11

Switch Predicate: is this SSH traffic?
Action: if yes drop else forward

● Example: suppose we want to implement two policies
○ Forwarding
○ Access Control

NetKAT syntax and semantics

12

NetKAT syntax and semantics

● Policies: function from packets to sets of packets. Used to filter and
modify packets

● Policy combinators
○ The union combinator (p + q) generates the union of the sets produced by applying

each of p and q to the input packet
○ The sequential composition combinator (p·q) applies p to the input packet, then applies

q to each packet in the resulting set, and takes the union of all of the resulting sets
● Armed with it, we can implement the forwarding policy

13

● Packet is represented as a record with

fields for standard headers such as
○ source address (src)

○ destination address (dst)

○ protocol type (typ)

● And two fields that identify the current

location of the packet in the network
○ switch (sw)

○ port (pt)

NetKAT example: forwarding

14

DST TYPSRC

DST TYPSRC SW PT

NetKAT example: forwarding

● A filter takes any input
packet and yields the singleton
set if field of equals ,
and otherwise.

● A modification takes any
input packet and yields the
singleton set where is
the packet obtained from by
setting to .

15

NetKAT example: forwarding

● We can define forwarding as

16

● A policy that will block SSH traffic

NetKAT example: access control (AC)

17

● A policy that will block SSH traffic

● Blocking only on Switch A

NetKAT example: access control (AC)

18

NetKAT example: access control (AC)

19

● A policy that will block SSH traffic

● Blocking only on Switch A

● Blocking only on Switch B

● How do we answer questions
about the network?

○ Are non-SSH packets forwarded?
○ Are SSH packets dropped?
○ Are pAC, pA, and pB equivalent?

● Is inspecting the policies enough?

Topology in NetKAT

20

Topology in NetKAT

21

● How do we answer questions
about the network?

○ Are non-SSH packets forwarded?
○ Are SSH packets dropped?
○ Are pAC, pA, and pB equivalent?

● Is inspecting the policies enough?
● No! The answers depend

fundamentally on the network
topology.

Topology in NetKAT

● A network topology is a directed
graph with hosts and switches as
nodes and links as edges

● Links are unidirectional
● Bidirectional links are pair of

unidirectional links

22

Topology in NetKAT

23

● A network topology is a directed
graph with hosts and switches as
nodes and links as edges

● Links are unidirectional
● Bidirectional links are pair of

unidirectional links
● The following policy models the

internal links between switches A
and B, and the links at the perimeter
to hosts 1 and 2

● If host 1 sends a non-SSH packet to
host 2, it is first processed by switch A,
then the link between A and B, and
finally by switch B

● NetKAT expression

● We can generalize the global behavior
by using Kleene Star

Topology in NetKAT

24

● It is often useful to restrict attention
to packets that enter and exit the
network at specified external
locations e

Topology in NetKAT

25

Topology in NetKAT

● It is often useful to restrict attention
to packets that enter and exit the
network at specified external
locations e

● Restrict the policy to packets sent or
received by one of the hosts

26

Logical crossbar

Topology in NetKAT

● More generally, the input and output
predicates may be distinct

● We call a network modeled in this
way a logical crossbar, since it
encodes end-to-end processing
behavior

27

Preliminaries: What is our notation?

- A packet pk is a record with fields f1...fk mapping to fixed-width integers n.
- Assume finite set of packet headers including Ethernet source and destination

addresses, VLAN tag, IP source and destination addresses, TCP and UDP
source and destination ports

28

IP TCPEthernet

Preliminaries: What is our notation?

- A packet pk is a record with fields f1...fk mapping to fixed-width integers n.
- Assume finite set of packet headers including Ethernet source and destination

addresses, VLAN tag, IP source and destination addresses, TCP and UDP
source and destination ports

- Include special fields for switch (sw) port (pt) and payload.
- Write pk.f for value in field f of pk, and pk [f := n] for the packet obtained from

pk by updating field f to n.

IP TCPEthernet SW PT Payload

29

Preliminaries: Packet Histories

- Packet history records the state of each packet as it travels from switch to
switch

- A packet history h is a non-empty sequence of packets
- We write pk::<> to denote a history with one element, pk::h to denote the

history constructed by prepending pk on to h, and <pk1 , . . . , pkn > for the
history with elements pk1 to pkn

- We write H for the set of all histories, and Ƥ(H) for the powerset of H

30

IP TCPEthernet SW PT Payload

Syntax: Predicates & Policies

31

Semantics

32

- Every NetKAT predicate and policy
denotes a function that takes history h and
produces set of histories { h1…,hn}

- The empty set models dropping the
packet (and its history)

- Singleton models modifying or forwarding
the packet to a single location

- A set with multiple histories models
modifying the packet in several ways or
forwarding the packet to multiple locations

Equational Theory: Axioms

33

Equational Theory: Axioms

34

Equational Theory: Axioms

35

Equational Theory: Axioms

36

Equational Theory: Axioms

37

Equational Theory: Axioms

38

Equational Theory: Axioms

39

Equational Theory: Axioms

40

Equational Theory: Axioms

41

Equational Theory Example: Access Control
- Policy PA filters SSH packets on switch A while PB filters SSH packets on

switch B
- We can prove these are equivalent on SSH traffic going to left to right across

our topology
- This is a simple form of code motion - relocating the filter from A to B

42

Equational Theory Example: Access Control
- Policy PA filters SSH packets on switch A while PB filters SSH packets on

switch B
- We can prove these are equivalent on SSH traffic going to left to right across

our topology
- This is a simple form of code motion - relocating the filter from A to B
- The first lemma of the proof shows sequencing a predicate that matches

switch A with a predicate that matches switch B will drop all packets

43

Equational Theory Example: Access Control
- We use the logical crossbar encoding with predicates

44

Equational Theory Example: Access Control

45

Equational Theory Example: Access Control
- Next, we’ll see lemma 2 of the proof
- Lemma 2 proves sequential composition of an arbitrary policy q, the predicate

aA, topology t, and an output predicate is equivalent to the policy that drops all
packets

46

Equational Theory Example: Access Control

47

Equational Theory Example: Access Control
- Finally, we’ll see lemma 3 of the proof
- Lemma 3 proves PA and PB both drop SSH traffic going from host 1 to host 2

48

49

NetKAT at work: useful properties

● Reachability properties
○ Can host [a] send packets to host [b]?

● Traffic isolation
○ Policies for particular network traffic does not impact other traffic

● Compiler correctness
○ Ensure NetKAT policies correctly translated to network rules

50

Reachability: some interesting questions
● Can host [a] send packets to host [b]?

51

Reachability: some interesting questions
● Can host [a] send packets to host [b]?

● Are managed hosts kept separate from unmanaged hosts?

52

● Can host [a] send packets to host [b]?

● Are managed hosts kept separate from unmanaged hosts?

● Does all untrusted traffic traverse the intrusion detection system (IDS)?

Reachability: some interesting questions

53

Reachability: some interesting questions
● Can host [a] send packets to host [b]?

● Are managed hosts kept separate from unmanaged hosts?

● Does all untrusted traffic traverse the intrusion detection system (IDS)?

54

…

…

…

Reachability: can host [a] send packets to host [b]?

a

a

a b

b

b

55

a b

Reachability: can host [a] send packets to host [b]?

…

…

…

a

a

a b

b

b

56

Reachability: can host [a]
send packets to host [b]? a b

57

Behaviour of an entire network (crossbar model)

a b

Reachability: can host [a]
send packets to host [b]?

58

Behaviour of an entire network (crossbar model)

a b

dup records a packet and
lets us reason about

behaviour of each individual hop

Reachability: can host [a]
send packets to host [b]?

59

Behaviour of an entire network (crossbar model)

a b

dup records a packet and
lets us reason about

behaviour of each individual hop

Reachability: can host [a]
send packets to host [b]?

60

prepending a filters packets
with source [a] and

b filters packets with destination [b]

a b

Reachability: can host [a]
send packets to host [b]?

61

prepending a filters packets
with source [a] and

b filters packets with destination [b]

How do we know that this is correct?

a b

Reachability: can host [a]
send packets to host [b]?

62

● Prove correctness
● Define reachability: show semantic notion
● Translate

○ denotational semantics of reachability, and
○ below equation into the language model

● Equations are easily related to one another in the language model

prepending a filters packets
with source [a] and

b filters packets with destination [b]

NetKAT language model

63

Set of complete assignments

Set of complete atoms (tests)

3 5

64

1

2

1
2

3

4

5
6

64

NetKAT language model I is a guarded string
NetKAT language model consists of regular
subsets of a restricted class of guarded strings I.

Intuition: [a] can talk to [a] if there is a trace
where packet’s first hop is [a] last hop is [b]

a b

Reachability: can host [a]
send packets to host [b]?

65

a b

Reachability: can host [a]
send packets to host [b]?

66

a b

Reachability: can host [a]
send packets to host [b]?

67

a b

Reachability: can host [a]
send packets to host [b]?

68

a b

Reachability: can host [a]
send packets to host [b]?

69

Also translate each term in the semantic definition
of reachability into the language model

a b

Reachability: can host [a]
send packets to host [b]?

70

Also translate each term in the semantic definition
of reachability into the language model

a b

Reachability: can host [a]
send packets to host [b]?

71

a b

Reachability: can host [a]
send packets to host [b]?

72

a b

● Define reachability: show semantic notion
● Translate

○ denotational semantics of reachability, and
○ below equation into the language model

● Show NetKAT equation is equivalent to the reachability definition

73

To prove correctness

● Showed how Kleene algebra with tests (KAT) applies to networks

● Formally described NetKAT syntax, semantics, and axioms

● Applied equational theory in NetKAT

● Gave examples of NetKAT equation to
○ drop SSH traffic between two nodes

○ check reachability between two nodes

● Formally showed correctness of the reachability equation

Takeaways

74

1. NetKAT: semantic foundations for networks, POPL’14 (Symposium on
Principles of Programming Languages),
http://dl.acm.org/citation.cfm?id=2535862

2. NetKAT: Semantic Foundations for Networks, Technical Report, 2013,
https://ecommons.cornell.edu/handle/1813/34445

3. Dexter Kozen. Kleene algebra with tests. Transactions on Programming
Languages and Systems, 19(3):427–443, May 1997.

References

75

http://dl.acm.org/citation.cfm?id=2535862
http://dl.acm.org/citation.cfm?id=2535862
https://ecommons.cornell.edu/handle/1813/34445
https://ecommons.cornell.edu/handle/1813/34445

