CPSC 509: Programming Language Principles Class presentation by David Johnson, Rodrigo Araujo and Nodir Kodirov

Semantic Foundations for Networks

By Carolyn Jane Anderson et al. at POPL'14 Symposium on Principles of Programming Languages

December 2, 2016

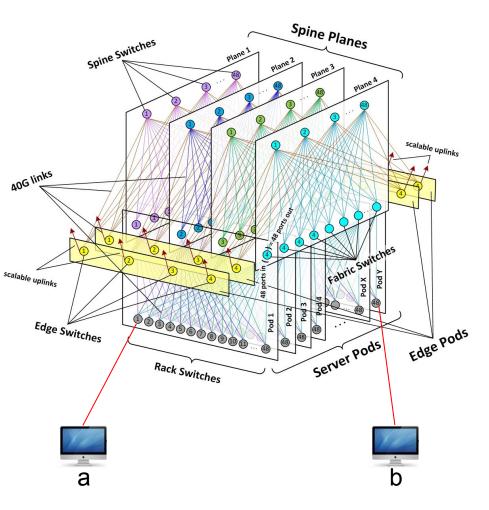
Why a cat?

NetKAT:	semantic foundation	ns for networks	
Full Text:	₿ <u>PDF</u>		54.
Authors:	see <u>source materials</u> b Carolyn Jane Anderson	elow for <u>more options</u> I <u>Swarthmore College, Swarthmore, PA, USA</u>	The second secon
	Nate Foster	Cornell University, Ithaca, NY, USA	
	Arjun Guha	University of Massachusetts Amherst, Amherst, MA,	The second s
		USA	Bibliometrics
	<u>Jean-Baptiste Jeannin</u>	Carnegie Mellon University, Pittsburgh, PA, USA	· Citation Count: 35
	Dexter Kozen	Cornell University, Ithaca, NY, USA	 Downloads (cumulative): 712
	Cole Schlesinger	Princeton University, Princeton, NJ, USA	Downloads (12 Months): 225 Downloads (6 Weeks): 28
	David Walker	Princeton University, Princeton, NJ, USA	Downloads (o Weeks). 20

Why a cat? Why a network?

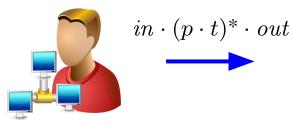
• Networks are cool :-)

NetKAT: s	semantic foundatio	ns for networks	
Full Text:	[™] PDF		
	see <u>source materials</u> b	elow for <u>more options</u>	and the second s
Authors:	Carolyn Jane Andersor	Swarthmore College, Swarthmore, PA, USA	
	Nate Foster	Cornell University, Ithaca, NY, USA	
	<u>Arjun Guha</u>	University of Massachusetts Amherst, Amherst, MA,	The second se
		USA	Bibliometrics
	Jean-Baptiste Jeannin	Carnegie Mellon University, Pittsburgh, PA, USA	· Citation Count: 35
	Dexter Kozen	Cornell University, Ithaca, NY, USA	Downloads (cumulative): 712
	Cole Schlesinger	Princeton University, Princeton, NJ, USA	 Downloads (12 Months): 225 Downloads (6 Weeks): 28
	David Walker	Princeton University, Princeton, NJ, USA	Downloads (o Weeks). 20



Facebook data center at Altoona, Iowa

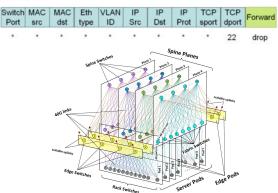
Facebook data center


- Around 90K servers
- Up to 10 Gbps point-to-point
- 7.68 Tbps uplink
- Non-trivial question
 - Can server [a] talk to [b]?

Why NetKAT?

- Linguistic approach to reason about end-to-end network behaviour
- Relates to class: Kleene stars from hw2 stars(g(oo*)*al)
- And many other concepts
 - denotational/axiomatic semantics
 - equational axioms/reasoning
 - properties of the program
- A grand theme
 - the structure of your definitions guides the structure of your reasoning

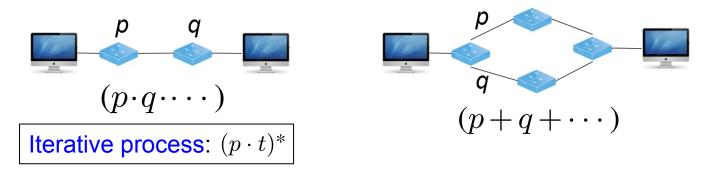
Big picture: how is NetKAT used?


OpenFlow rule to configure network

Network admin intent: - can host [a] send packets to host [b]? - drop all SSH traffic from [a] to [b]

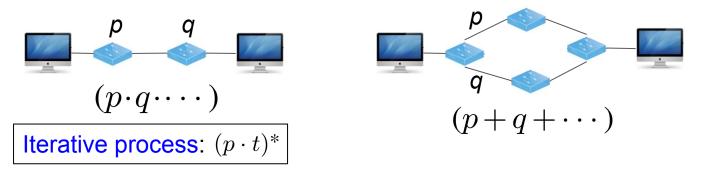
Prove soundness and completeness

Firewall



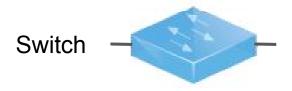
Contents

- Rodrigo: informal description to NetKAT and its constructs
- David: formal description
 - o syntax, semantics, axioms, equational theory
- Nodir: put formal constructs to work
 - Prove soundness of NetKAT reachability equation


Network as an automaton to move packets

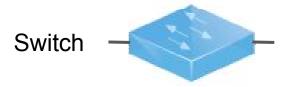
- Automaton: move packets from node to node along the links in topology
- PL people: use regular expressions: the language of finite automata

Network as an automaton to move packets


- Automaton: move packets from node to node along the links in topology
- PL people: use regular expressions: the language of finite automata

- This modelling allows to use Kleene Algebra (KA) to reason about network properties formally
- KA: decades-old sounds and complete equational theory of regular exp.

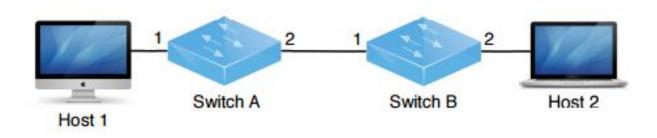
Network (as a collection of) predicates and actions


- Now we have KA to reason about network structure (global behavior)
- What about individual network components (switch)?

Predicate: is this SSH traffic? Action: if yes drop else forward

Network (as a collection of) predicates and actions

- Now we have KA to reason about network structure (global behavior)
- What about individual network components (switch)?



Predicate: is this SSH traffic? Action: if yes drop else forward

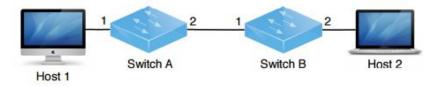
- Hence we use
 - Kleene Algebra: for reasoning about network structure
 - **Boolean Algebra**: for reasoning about predicates that define switch behaviour
- These two are unified in Kleene algebra with tests (KAT) [3]

NetKAT syntax and semantics

- Example: suppose we want to implement two policies
 - Forwarding
 - Access Control

NetKAT syntax and semantics

- Policies: function from packets to sets of packets. Used to filter and modify packets
- Policy combinators
 - The union combinator (p + q) generates the union of the sets produced by applying each of p and q to the input packet
 - The sequential composition combinator $(p \cdot q)$ applies p to the input packet, then applies q to each packet in the resulting set, and takes the union of all of the resulting sets
- Armed with it, we can implement the forwarding policy

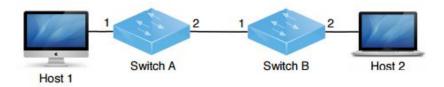

NetKAT example: forwarding

- Packet is represented as a record with fields for standard headers such as
 - source address (src)
 - destination address (dst)
 - protocol type (typ)
- And two fields that identify the current

location of the packet in the network

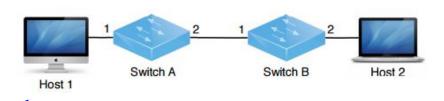
0	switch	(SW)
---	--------	------

• port (pt)



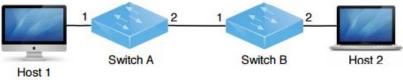
	SRC	DST	TYP
--	-----	-----	-----

SRC	DST	TYP	SW	PT
-----	-----	-----	----	----

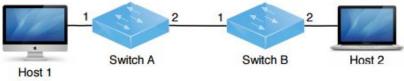

NetKAT example: forwarding

- A filter f = n takes any input packet pk and yields the singleton set $\{pk\}$ if field f of pk equals n, and $\{\}$ otherwise.
- A modification $(f \leftarrow n)$ takes any input packet pk and yields the singleton set $\{pk'\}$ where pk' is the packet obtained from pk by setting f to n.

NetKAT example: forwarding


• We can define forwarding as

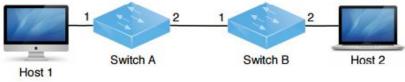
$$p \stackrel{\Delta}{=} (dst = H_1 \cdot pt \leftarrow 1) + (dst = H_2 \cdot pt \leftarrow 2)$$


NetKAT example: access control (AC)

• A policy that will block SSH traffic $p_{AC} \stackrel{\Delta}{=} \neg (typ = SSH) \cdot p$

NetKAT example: access control (AC)

• A policy that will block SSH traffic $p_{AC} \stackrel{\Delta}{=} \neg (typ = SSH) \cdot p$

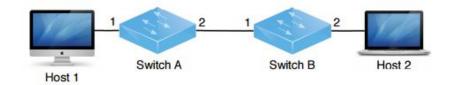


• Blocking only on Switch A

$$p_A \stackrel{\Delta}{=} (sw = A \cdot \neg (typ = SSH) \cdot p) + (sw = B \cdot p)$$

NetKAT example: access control (AC)

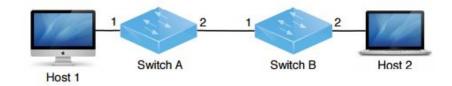
• A policy that will block SSH traffic $p_{AC} \stackrel{\Delta}{=} \neg (typ = SSH) \cdot p \stackrel{\text{\tiny Host}}{\longrightarrow}$


• Blocking only on Switch A

$$p_A \stackrel{\Delta}{=} (sw = A \cdot \neg (typ = SSH) \cdot p) + (sw = B \cdot p)$$

Blocking only on Switch B

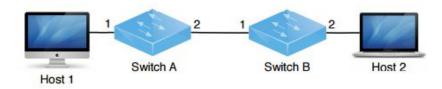
$$p_B \stackrel{\Delta}{=} (sw = A \cdot p) + (sw = B \cdot \neg (typ = SSH) \cdot p)$$


- How do we answer questions about the network?
 - Are non-SSH packets forwarded?
 - Are SSH packets dropped?
 - \circ ~ Are ${\rm p}_{\rm AC},\,{\rm p}_{\rm A},$ and ${\rm p}_{\rm B}$ equivalent?
- Is inspecting the policies enough?

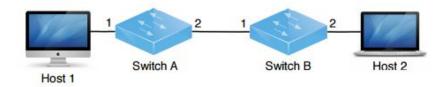
$$p_{AC} \stackrel{\Delta}{=} \neg (typ = SSH) \cdot p$$

$$p_A \stackrel{\Delta}{=} (sw = A \cdot \neg (typ = SSH) \cdot p) + (sw = B \cdot p)$$
$$p_B \stackrel{\Delta}{=} (sw = A \cdot p) + (sw = B \cdot \neg (typ = SSH) \cdot p)$$

- How do we answer questions about the network?
 - Are non-SSH packets forwarded?
 - Are SSH packets dropped?
 - \circ Are $p_{AC}^{}$, $p_A^{}$, and $p_B^{}$ equivalent?
- Is inspecting the policies enough?
- No! The answers depend fundamentally on the network topology.



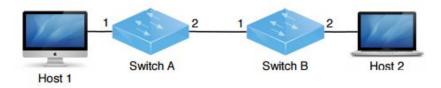
$$p_{AC} \stackrel{\Delta}{=} \neg(typ = SSH) \cdot p$$


$${}^{\Delta}p_A \stackrel{\Delta}{=} (sw = A \cdot \neg (typ = SSH) \cdot p) + (sw = B \cdot p)$$

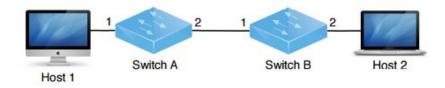
$$p_B \stackrel{\Delta}{=} (sw = A \cdot p) + (sw = B \cdot \neg (typ = SSH) \cdot p)$$

- A network topology is a directed graph with hosts and switches as nodes and links as edges
- Links are unidirectional
- Bidirectional links are pair of unidirectional links

- A network topology is a directed graph with hosts and switches as nodes and links as edges
- Links are unidirectional
- Bidirectional links are pair of unidirectional links
- The following policy models the internal links between switches A and B, and the links at the perimeter to hosts 1 and 2

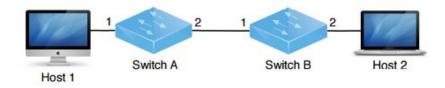

$$\begin{split} t &= (\mathsf{sw} = A \cdot \mathsf{pt} = 2 \cdot \mathsf{sw} \leftarrow B \cdot \mathsf{pt} \leftarrow 1) + \\ (\mathsf{sw} = B \cdot \mathsf{pt} = 1 \cdot \mathsf{sw} \leftarrow A \cdot \mathsf{pt} \leftarrow 2) + \\ (\mathsf{sw} = A \cdot \mathsf{pt} = 1) + \\ (\mathsf{sw} = B \cdot \mathsf{pt} = 2) \end{split}$$

 If host 1 sends a non-SSH packet to host 2, it is first processed by switch A, then the link between A and B, and finally by switch B


• We can generalize the global behavior by using Kleene Star

$$(p_{AC} \cdot t)^*$$

 It is often useful to restrict attention to packets that enter and exit the network at specified external locations e

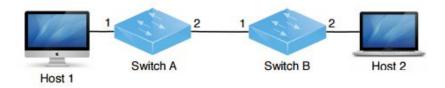

.

$$e \stackrel{\Delta}{=} (sw = A \cdot pt = 1) + (sw = B \cdot pt = 2)$$

 It is often useful to restrict attention to packets that enter and exit the network at specified external locations e

.

$$e \stackrel{\Delta}{=} (sw = A \cdot pt = 1) + (sw = B \cdot pt = 2)$$


• Restrict the policy to packets sent or received by one of the hosts

$$p_{net} \stackrel{\Delta}{=} e \cdot (p_{AC} \cdot t)^* \cdot e$$

• More generally, the input and output predicates may be distinct

 $in \cdot (p \cdot t)^* \cdot out$

 We call a network modeled in this way a logical crossbar, since it encodes end-to-end processing behavior

Logical crossbar

Preliminaries: What is our notation?

Ethernet	IP	ТСР
----------	----	-----

- A packet *pk* is a record with fields $f_1 \dots f_k$ mapping to fixed-width integers *n*.
- Assume finite set of *packet headers* including Ethernet source and destination addresses, VLAN tag, IP source and destination addresses, TCP and UDP source and destination ports

Preliminaries: What is our notation?

Ethernet IP	ТСР	SW	PT	Payload
-------------	-----	----	----	---------

- A packet *pk* is a record with fields $f_1 \dots f_k$ mapping to fixed-width integers *n*.
- Assume finite set of *packet headers* including Ethernet source and destination addresses, VLAN tag, IP source and destination addresses, TCP and UDP source and destination ports
- Include special fields for switch (sw) port (pt) and payload.
- Write *pk.f* for value in field *f* of *pk*, and *pk* [*f* := *n*] for the packet obtained from *pk* by updating field *f* to *n*.

Preliminaries: Packet Histories

Ethernet	IP	ТСР	SW	PT	Payload
----------	----	-----	----	----	---------

- Packet history records the state of each packet as it travels from switch to switch
- A packet history *h* is a non-empty sequence of packets
- We write *pk*::<> to denote a history with one element, *pk*::*h* to denote the history constructed by prepending *pk* on to *h*, and <*pk*₁, ..., *pk*_n > for the history with elements *pk*₁ to *pk*_n
- We write H for the set of all histories, and P(H) for the powerset of H

Syntax: Predicates & Policies

PredicatesPoliciesa, b ::= 1Identityp, q ::= aFilter| 0Drop $| f \leftarrow n$ Modification| f = nTest| p + qUnion| a + bDisjunction $p \cdot q$ Sequential composition $| a \cdot b$ Conjunction p^* Kleene star $\neg a$ Negation| dupDuplication

Semantics

- Every NetKAT predicate and policy denotes a function that takes history *h* and produces set of histories { *h*₁...,*h*_n}
- The empty set models dropping the packet (and its history)
- Singleton models modifying or forwarding the packet to a single location
- A set with multiple histories models modifying the packet in several ways or forwarding the packet to multiple locations

 $\llbracket p \rrbracket \in \mathsf{H} \to \mathcal{P}(\mathsf{H})$ $\llbracket 1 \rrbracket h \triangleq \{h\}$ $\llbracket 0 \rrbracket h \triangleq \{\}$ $\llbracket f = n \rrbracket \ (pk::h) \triangleq \begin{cases} \{pk::h\} & \text{if } pk.f = n \\ \{\} & \text{otherwise} \end{cases}$ $\llbracket \neg a \rrbracket h \triangleq \{h\} \setminus (\llbracket a \rrbracket h)$ $\llbracket f \leftarrow n \rrbracket \ (pk::h) \triangleq \{ pk[f := n]::h \}$ $\llbracket p+q \rrbracket h \triangleq \llbracket p \rrbracket h \cup \llbracket q \rrbracket h$ $\llbracket p \cdot q \rrbracket h \triangleq (\llbracket p \rrbracket \bullet \llbracket q \rrbracket) h$ $\llbracket p^* \rrbracket h \triangleq \bigcup_{i \in \mathbb{N}} F^i h$ where $F^0 h \triangleq \{h\}$ and $F^{i+1} h \triangleq (\llbracket p \rrbracket \bullet F^i) h$ $\llbracket \mathsf{dup} \rrbracket (pk::h) \triangleq \{pk::(pk::h)\}$

Kleene Algebra Axioms

 $p + (q+r) \equiv (p+q) + r$ $p+q \equiv q+p$ $p + 0 \equiv p$ $p + p \equiv p$ $p \cdot (q \cdot r) \equiv (p \cdot q) \cdot r$ $1 \cdot p \equiv p$ $p \cdot 1 \equiv p$ $p \cdot (q+r) \equiv p \cdot q + p \cdot r$ $(p+q) \cdot r \equiv p \cdot r + q \cdot r$ $\mathbf{0} \cdot p \equiv \mathbf{0}$ $p \cdot \mathbf{0} \equiv \mathbf{0}$ $1 + p \cdot p^* \equiv p^*$ $q + p \cdot r < r \Rightarrow p^* \cdot q < r$ $1 + p^* \cdot p \equiv p^*$ $p + q \cdot r < q \Rightarrow p \cdot r^* < q$

KA-PLUS-ASSOC KA-PLUS-COMM KA-PLUS-ZERO **KA-PLUS-IDEM KA-SEQ-ASSOC** KA-ONE-SEO KA-SEQ-ONE KA-SEQ-DIST-L KA-SEO-DIST-R KA-ZERO-SEQ KA-SEQ-ZERO KA-UNROLL-L KA-LFP-L KA-UNROLL-R KA-LFP-R

Additional Boolean Algebra Axioms

$a + (b \cdot c) \equiv (a + b) \cdot (a + c)$	BA
$a+1\equiv 1$	BA
$a + \neg a \equiv 1$	BA
$a \cdot b \equiv b \cdot a$	BA
$a \cdot \neg a \equiv 0$	BA
$a \cdot a \equiv a$	BA

BA-PLUS-DIST BA-PLUS-ONE BA-EXCL-MID BA-SEQ-COMM BA-CONTRA BA-SEQ-IDEM

Kleene Algebra Axioms

$p + (q+r) \equiv (p+q) + r$	KA-PLUS-ASSOC
$p+q \equiv q+p$	KA-PLUS-COMM
$p + 0 \equiv p$	KA-PLUS-ZERO
$p + p \equiv p$	KA-PLUS-IDEM
$p \cdot (q \cdot r) \equiv (p \cdot q) \cdot r$	KA-SEQ-ASSOC
$1 \cdot p \equiv p$	KA-ONE-SEQ
$p \cdot 1 \equiv p$	KA-SEQ-ONE
$p \cdot (q+r) \equiv p \cdot q + p \cdot r$	KA-SEQ-DIST-L
$(p+q) \cdot r \equiv p \cdot r + q \cdot r$	KA-SEQ-DIST-R
$0 \cdot p \equiv 0$	KA-ZERO-SEQ
$p \cdot 0 \equiv 0$	KA-SEQ-ZERO
$1 + p \cdot p^* \equiv p^*$	KA-UNROLL-L
$q + p \cdot r \le r \Rightarrow p^* \cdot q \le r$	KA-LFP-L
$1 + p^* \cdot p \equiv p^*$	KA-UNROLL-R
$p+q\cdot r\leq q {\Rightarrow} p\cdot r^*\leq q$	KA-LFP-R

Additional Boolean Algebra Axioms

$a + (b \cdot c) \equiv (a+b) \cdot (a+c)$	BA-PLUS-DIST
$a+1\equiv 1$	BA-PLUS-ONE
$a + \neg a \equiv 1$	BA-EXCL-MID
$a \cdot b \equiv b \cdot a$	BA-SEQ-COMM
$a \cdot \neg a \equiv 0$	BA-CONTRA
$a \cdot a \equiv a$	BA-SEQ-IDEM

KAT Theorems

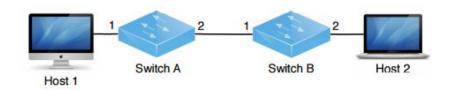
KAT-COMMUTE

KAT-INVARIANT If $a \cdot p \equiv p \cdot a$ then $a \cdot p^* \equiv a \cdot (p \cdot a)^*$ KAT-SLIDING $p \cdot (q \cdot p)^* \equiv (p \cdot q)^* \cdot p$ KAT-DENESTING $p^* \cdot (q \cdot p^*)^* \equiv (p+q)^*$ If for all atomic x in q, $x \cdot p \equiv p \cdot x$ then $q \cdot p \equiv p \cdot q$

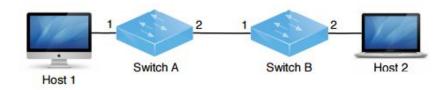
Packet Algebra Axioms

 $\begin{array}{l} f \leftarrow n \cdot f' \leftarrow n' \equiv f' \leftarrow n' \cdot f \leftarrow n, \text{ if } f \neq f' \text{ PA-MOD-MOD-COMM} \\ f \leftarrow n \cdot f' = n' \equiv f' = n' \cdot f \leftarrow n, \text{ if } f \neq f' \text{ PA-MOD-FILTER-COMM} \\ \text{dup} \cdot f = n \equiv f = n \cdot \text{dup} \end{array}$

$$\begin{array}{ll} f \leftarrow n \cdot f' \leftarrow n' \equiv f' \leftarrow n' \cdot f \leftarrow n, \text{ if } f \neq f' \text{ PA-MOD-MOD-COMM} \\ f \leftarrow n \cdot f' = n' \equiv f' = n' \cdot f \leftarrow n, \text{ if } f \neq f' \text{ PA-MOD-FILTER-COMM} \\ \text{dup} \cdot f = n \equiv f = n \cdot \text{dup} \\ f \leftarrow n \cdot f = n \equiv f \leftarrow n \end{array} \qquad \begin{array}{ll} \text{PA-MOD-FILTER-COMM} \\ \text{PA-DUP-FILTER-COMM} \\ \text{PA-MOD-FILTER} \end{array}$$

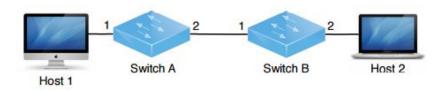

$$\begin{array}{ll} f \leftarrow n \cdot f' \leftarrow n' \equiv f' \leftarrow n' \cdot f \leftarrow n, \text{ if } f \neq f' \text{ PA-MOD-MOD-COMM} \\ f \leftarrow n \cdot f' = n' \equiv f' = n' \cdot f \leftarrow n, \text{ if } f \neq f' \text{ PA-MOD-FILTER-COMM} \\ \text{dup} \cdot f = n \equiv f = n \cdot \text{dup} & \text{PA-DUP-FILTER-COMM} \\ f \leftarrow n \cdot f = n \equiv f \leftarrow n & \text{PA-MOD-FILTER} \\ f = n \cdot f \leftarrow n \equiv f = n & \text{PA-MOD-FILTER} \\ \end{array}$$

$$\begin{array}{ll} f \leftarrow n \cdot f' \leftarrow n' \equiv f' \leftarrow n' \cdot f \leftarrow n, \text{ if } f \neq f' \text{ PA-MOD-MOD-COMM} \\ f \leftarrow n \cdot f' \equiv n' \equiv f' = n' \cdot f \leftarrow n, \text{ if } f \neq f' \text{ PA-MOD-FILTER-COMM} \\ \text{dup} \cdot f = n \equiv f = n \cdot \text{dup} & \text{PA-DUP-FILTER-COMM} \\ f \leftarrow n \cdot f = n \equiv f \leftarrow n & \text{PA-MOD-FILTER} \\ f = n \cdot f \leftarrow n \equiv f = n & \text{PA-MOD-FILTER} \\ f \leftarrow n \cdot f \leftarrow n' \equiv f \leftarrow n' & \text{PA-MOD-MOD} \end{array}$$


$$\begin{array}{ll} f\leftarrow n\cdot f'\leftarrow n'\equiv f'\leftarrow n'\cdot f\leftarrow n, \ \mathrm{if}\ f\neq f' \ \mathrm{PA-MOD-MOD-COMM} \\ f\leftarrow n\cdot f'\equiv n'\equiv f'=n'\cdot f\leftarrow n, \ \mathrm{if}\ f\neq f' \ \mathrm{PA-MOD-FILTER-COMM} \\ \mathrm{dup}\cdot f\equiv n\equiv f=n\cdot \mathrm{dup} & \mathrm{PA-DUP-FILTER-COMM} \\ f\leftarrow n\cdot f\equiv n\equiv f\leftarrow n & \mathrm{PA-DUP-FILTER-COMM} \\ f\in n\cdot f\leftarrow n\equiv f=n & \mathrm{PA-MOD-FILTER} \\ f=n\cdot f\leftarrow n'\equiv f\leftarrow n' & \mathrm{PA-MOD-FILTER-MOD} \\ f\leftarrow n\cdot f=n'\equiv 0, \ \mathrm{if}\ n\neq n' & \mathrm{PA-MOD-MOD} \\ \end{array}$$

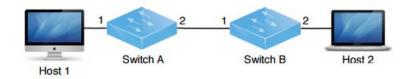
$$\begin{array}{ll} f \leftarrow n \cdot f' \leftarrow n' \equiv f' \leftarrow n' \cdot f \leftarrow n, \text{ if } f \neq f' \text{ PA-MOD-MOD-COMM} \\ f \leftarrow n \cdot f' \equiv n' \equiv f' \equiv n' \cdot f \leftarrow n, \text{ if } f \neq f' \text{ PA-MOD-FILTER-COMM} \\ \text{dup} \cdot f = n \equiv f = n \cdot \text{dup} & \text{PA-DUP-FILTER-COMM} \\ f \leftarrow n \cdot f = n \equiv f \leftarrow n & \text{PA-MOD-FILTER} \\ f = n \cdot f \leftarrow n \equiv f = n & \text{PA-MOD-FILTER} \\ f \leftarrow n \cdot f \leftarrow n' \equiv f \leftarrow n' & \text{PA-MOD-FILTER-MOD} \\ f \leftarrow n \cdot f = n' \equiv 0, \text{ if } n \neq n' & \text{PA-MOD-MOD} \\ \sum_{i} f = i \equiv 1 & \text{PA-MATCH-ALL} \end{array}$$

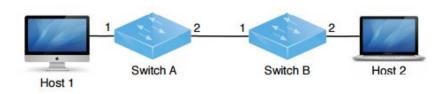
- Policy P_A filters SSH packets on switch A while P_B filters SSH packets on switch B
- We can prove these are equivalent on SSH traffic going to left to right across our topology
- This is a simple form of code motion relocating the filter from A to B


- Policy P_A filters SSH packets on switch A while P_B filters SSH packets on switch B
- We can prove these are equivalent on SSH traffic going to left to right across our topology
- This is a simple form of code motion relocating the filter from A to B
- The first lemma of the proof shows sequencing a predicate that matches switch A with a predicate that matches switch B will drop all packets

- We use the logical crossbar encoding with predicates

$$in \triangleq (\mathsf{sw} = A \cdot \mathsf{pt} = 1)$$
$$out \triangleq (\mathsf{sw} = B \cdot \mathsf{pt} = 2)$$

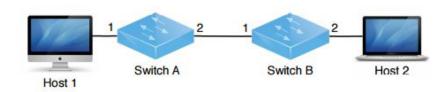

$$a_A \triangleq (\mathsf{sw} = A)$$
 $a_1 \triangleq (\mathsf{pt} = 1)$ $a_B \triangleq (\mathsf{sw} = B)$ $a_2 \triangleq (\mathsf{pt} = 2)$


Lemma 1. $in \cdot a_B \cdot q \equiv 0$ $in \cdot a_B \cdot q$ \equiv { definition *in* } $a_A \cdot a_1 \cdot a_B \cdot q$ $\equiv \{ \text{KAT-COMMUTE} \}$ $a_A \cdot a_B \cdot a_1 \cdot q$ $\equiv \{ PA-CONTRA \}$ $\mathbf{0} \cdot a_1 \cdot q$ $\equiv \{ KA-ZERO-SEQ \}$ 0

$$\begin{array}{ll} in \triangleq (\mathsf{sw} = A \cdot \mathsf{pt} = 1) & a_A \triangleq (\mathsf{sw} = A) & a_1 \triangleq (\mathsf{pt} = 1) \\ out \triangleq (\mathsf{sw} = B \cdot \mathsf{pt} = 2) & a_B \triangleq (\mathsf{sw} = B) & a_2 \triangleq (\mathsf{pt} = 2) \end{array}$$

Proof.

- Next, we'll see lemma 2 of the proof
- Lemma 2 proves sequential composition of an arbitrary policy q, the predicate a_A, topology t, and an output predicate is equivalent to the policy that drops all packets

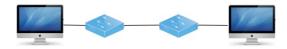


Lemma 2. $q \cdot a_A \cdot t \cdot out \equiv 0$ ≡ { PA-MOD-FILTER } Proof. $q \cdot a_A \cdot a_A \cdot a_2 \cdot m_B \cdot m_1 \cdot a_1 \cdot a_B \cdot a_2 +$ $q \cdot a_A \cdot a_B \cdot a_1 \cdot m_A \cdot a_A \cdot m_2 \cdot a_B \cdot a_2 +$ q · aA · t · out $q \cdot a_A \cdot a_A \cdot a_1 \cdot a_B \cdot a_2 +$ $\equiv \{ \text{ definition } t \}$ $q \cdot a_A \cdot a_B \cdot a_2 \cdot a_B \cdot a_2$ $q \cdot a_A \cdot (a_A \cdot a_2 \cdot m_B \cdot m_1 +$ $\equiv \{ \text{KAT-COMMUTE} \}$ $a_B \cdot a_1 \cdot m_A \cdot m_2 +$ $q \cdot a_A \cdot a_A \cdot a_2 \cdot m_B \cdot m_1 \cdot a_B \cdot a_1 \cdot a_2 +$ $a_A \cdot a_1 +$ $q \cdot a_A \cdot a_B \cdot a_1 \cdot m_A \cdot m_2 \cdot a_A \cdot a_B \cdot a_2 +$ $a_B \cdot a_2) \cdot out$ $q \cdot a_A \cdot a_A \cdot a_B \cdot a_1 \cdot a_2 +$ $\equiv \{ KA-Seq-Dist-L, KA-Seq-Dist-R \}$ $q \cdot a_A \cdot a_B \cdot a_2 \cdot a_B \cdot a_2$ $q \cdot a_A \cdot a_A \cdot a_2 \cdot m_B \cdot m_1 \cdot out +$ $\equiv \{ PA-CONTRA \}$ $q \cdot a_A \cdot a_B \cdot a_1 \cdot m_A \cdot m_2 \cdot out +$ $q \cdot a_A \cdot a_A \cdot a_2 \cdot m_B \cdot m_1 \cdot a_B \cdot 0 +$ $q \cdot a_A \cdot a_A \cdot a_1 \cdot out +$ $q \cdot a_A \cdot a_B \cdot a_1 \cdot m_A \cdot m_2 \cdot \mathbf{0} \cdot a_2 +$ $q \cdot a_A \cdot a_B \cdot a_2 \cdot out$ $q \cdot a_A \cdot a_A \cdot a_B \cdot 0 +$ $\equiv \{ \text{ definition } out \} \}$ $q \cdot \mathbf{0} \cdot a_2 \cdot a_B \cdot a_2$ $q \cdot a_A \cdot a_A \cdot a_2 \cdot m_B \cdot m_1 \cdot a_B \cdot a_2 +$ $\equiv \{ KA-SEQ-ZERO, KA-ZERO-SEQ \}$ $q \cdot a_A \cdot a_B \cdot a_1 \cdot m_A \cdot m_2 \cdot a_B \cdot a_2 +$ 0 + 0 + 0 + 0 $q \cdot a_A \cdot a_A \cdot a_1 \cdot a_B \cdot a_2 +$ $\equiv \{ KA-PLUS-IDEM \}$ $q \cdot a_A \cdot a_B \cdot a_2 \cdot a_B \cdot a_2$ $in \triangleq (sw = A \cdot pt = 1)$ $a_1 \triangleq (\mathsf{pt} \Longrightarrow)$ $a_A \triangleq (\mathsf{sw} = A)$ $out \triangleq (sw = B \cdot pt = 2)$ $a_B \triangleq (\mathsf{sw} = B)$ $a_2 \triangleq (\mathsf{pt} = 2)$ Switch A

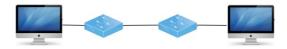
Switch B

Host 2

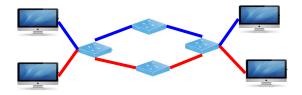
- Finally, we'll see lemma 3 of the proof
- Lemma 3 proves P_A and P_B both drop SSH traffic going from host 1 to host 2

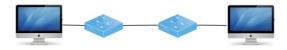

Lemma 3. $in \cdot SSH \cdot (p_A \cdot t)^* \cdot out \equiv in \cdot SSH \cdot (p_B \cdot t)^* \cdot out$ *Proof.*

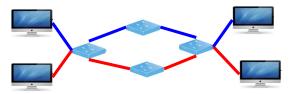
- $in \cdot SSH \cdot (p_A \cdot t)^* \cdot out$ $\equiv \{$ KAT-INVARIANT, definition $p_A \}$ $in \cdot \text{SSH} \cdot ((a_A \cdot \neg \text{SSH} \cdot p + a_D \cdot p) \cdot t \cdot \text{SSH})^* \cdot out$ $\equiv \{ KA-SEQ-DIST-R \}$ $in \cdot SSH \cdot (a_A \cdot \neg SSH \cdot p \cdot t \cdot SSH + a_B \cdot p \cdot t \cdot SSH)^* \cdot out$ $\equiv \{ \text{KAT-COMMUTE} \}$ $in \cdot SSH \cdot (a_A \cdot \neg SSH \cdot SSH \cdot p \cdot t + a_B \cdot p \cdot t \cdot SSH)^* \cdot out$ $\equiv \{ BA-CONTRA \}$ $in \cdot SSH \cdot (a_A \cdot \mathbf{0} \cdot p \cdot t + a_B \cdot p \cdot t \cdot SSH)^* \cdot out$ ≡ { KA-SEQ-ZERO/ZERO-SEQ, KA-PLUS-COMM, KA-PLUS-ZERO } $in \cdot SSH \cdot (a_B \cdot p \cdot t \cdot SSH)^* \cdot out$ $\equiv \{ KA-UNROLL-L \}$ $in \cdot \text{SSH} \cdot (1 + (a_B \cdot p \cdot t \cdot \text{SSH}) \cdot (a_B \cdot p \cdot t \cdot \text{SSH})^*) \cdot out$ ≡ { KA-SEQ-DIST-L, KA-SEQ-DIST-R, definition out } $in \cdot SSH \cdot a_B \cdot a_2 +$ $in \cdot SSH \cdot a_B \cdot p \cdot t \cdot SSH \cdot (a_B \cdot p \cdot t \cdot SSH)^* \cdot a_B \cdot a_2$ $\equiv \{ \text{KAT-COMMUTE} \}$ $in \cdot a_B \cdot SSH \cdot a_2 +$ $in \cdot a_B \cdot SSH \cdot p \cdot t \cdot SSH \cdot (a_B \cdot p \cdot t \cdot SSH)^* \cdot a_B \cdot a_2$ $\equiv \{ \text{Lemma 1} \}$ 0 + 0 $\equiv \{ KA-PLUS-IDEM \}$ 0
- $\equiv \{ KA-PLUS-IDEM \}$ 0 + 0 \equiv {Lemma 1, Lemma 2 } $in \cdot a_B \cdot SSH \cdot a_2 +$ $in \cdot SSH \cdot (a_A \cdot p \cdot t \cdot SSH)^* \cdot p \cdot SSH \cdot a_A \cdot t \cdot out$ \equiv { KAT-COMMUTE, definition out } $in \cdot SSH \cdot out +$ $in \cdot SSH \cdot (a_A \cdot p \cdot t \cdot SSH)^* \cdot a_A \cdot p \cdot t \cdot SSH \cdot out$ $\equiv \{ KA-Seq-Dist-L, KA-Seq-Dist-R \}$ $in \cdot SSH \cdot (1 + (a_A \cdot p \cdot t \cdot SSH)^* \cdot (a_A \cdot p \cdot t \cdot SSH)) \cdot out$ $\equiv \{ KA-UNROLL-R \}$ $in \cdot SSH \cdot (a_A \cdot p \cdot t \cdot SSH)^* \cdot out$ ≡ { KA-SEQ-ZERO/ZERO-SEQ, KA-PLUS-ZERO } $in \cdot SSH \cdot (a_A \cdot p \cdot t \cdot SSH + a_B \cdot \mathbf{0} \cdot p \cdot t)^* \cdot out$ $\equiv \{ BA-CONTRA \}$ $in \cdot SSH \cdot (a_A \cdot p \cdot t \cdot SSH + a_B \cdot \neg SSH \cdot SSH \cdot p \cdot t)^* \cdot out$ $\equiv \{ \text{KAT-COMMUTE} \}$ $in \cdot SSH \cdot (a_A \cdot p \cdot t \cdot SSH + a_B \cdot \neg SSH \cdot p \cdot t \cdot SSH)^* \cdot out$ $\equiv \{ KA-SEQ-DIST-R \}$ $in \cdot \text{SSH} \cdot ((a_A \cdot p + a_B \cdot \neg \text{SSH} \cdot p) \cdot t \cdot \text{SSH})^* \cdot out$ $\equiv \{$ KAT-INVARIANT, definition $p_B \}$ $in \cdot SSH \cdot (p_B \cdot t)^* \cdot out$

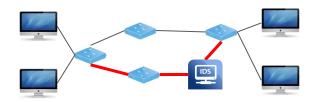

NetKAT at work: useful properties

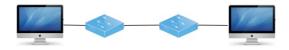
- Reachability properties
 - Can host [a] send packets to host [b]?
- Traffic isolation
 - Policies for particular network traffic does not impact other traffic
- Compiler correctness
 - Ensure NetKAT policies correctly translated to network rules

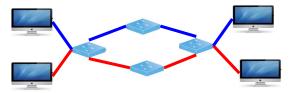

• Can host [a] send packets to host [b]?

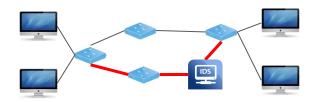

• Can host [a] send packets to host [b]?

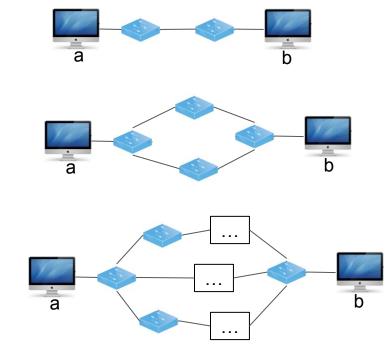

• Are managed hosts kept separate from unmanaged hosts?

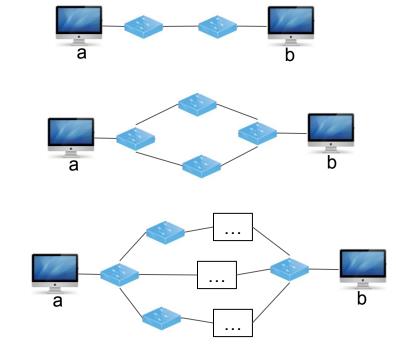

• Can host [a] send packets to host [b]?


• Are managed hosts kept separate from unmanaged hosts?


• Does all untrusted traffic traverse the intrusion detection system (IDS)?


• Can host [a] send packets to host [b]?




• Are managed hosts kept separate from unmanaged hosts?

• Does all untrusted traffic traverse the intrusion detection system (IDS)?

 $in \cdot (p \cdot t)^* \cdot out$ Behaviour of an entire network (crossbar model)

 $in \cdot (p \cdot t)^* \cdot out$ Behaviour of an entire network (crossbar model)

$$in \cdot dup \cdot (p \cdot t \cdot dup)^* \cdot out$$

behaviour of each individual hop

 $in \cdot (p \cdot t)^* \cdot out$ Behaviour of an entire network (crossbar model)

$$in \cdot dup \cdot (p \cdot t \cdot dup)^* \cdot out$$

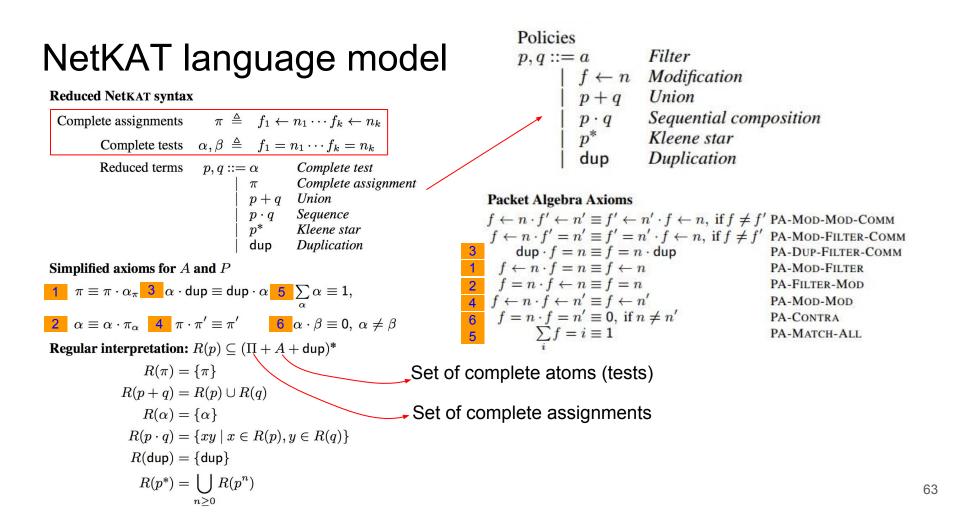
behaviour of each individual hop

$$a \cdot \mathsf{dup} \cdot (p \cdot t \cdot \mathsf{dup})^* \cdot b \not\equiv \mathbf{0}$$

prepending *a* filters packets with source [a] and *b* filters packets with destination [b]

How do we know that this is correct?

$$a \cdot \mathsf{dup} \cdot (p \cdot t \cdot \mathsf{dup})^* \cdot b \not\equiv \mathbf{0}$$


prepending *a* filters packets with source [a] and *b* filters packets with destination [b]

- Prove correctness
- Define reachability: show semantic notion
- Translate
 - o denotational semantics of reachability, and
 - below equation into the language model
- Equations are easily related to one another in the language model

$$a \cdot \mathsf{dup} \cdot (p \cdot t \cdot \mathsf{dup})^* \cdot b \not\equiv \mathbf{0}$$

prepending *a* filters packets with source [a] and *b* filters packets with destination [b]

NetKAT language model

Reduced NetKAT syntax

Complete assignments	$\pi \triangleq f_1 \leftarrow$	$f_1 \cdots f_k \leftarrow n_k$
Complete tests	$lpha,eta \ \triangleq \ f_1 =$	$n_1 \cdots f_k = n_k$
Reduced terms		Complete test Complete assignment Union Sequence Kleene star Duplication

Simplified axioms for A and P

$$\begin{split} \pi &\equiv \pi \cdot \alpha_{\pi} \qquad \alpha \cdot \mathsf{dup} \equiv \mathsf{dup} \cdot \alpha \qquad \sum_{\alpha} \alpha \equiv 1, \\ \alpha &\equiv \alpha \cdot \pi_{\alpha} \qquad \pi \cdot \pi' \equiv \pi' \qquad \alpha \cdot \beta \equiv \mathbf{0}, \ \alpha \neq \beta \end{split}$$

Regular interpretation: $R(p) \subseteq (\Pi + A + dup)^*$

$$R(\pi) = \{\pi\}$$

$$R(p+q) = R(p) \cup R(q)$$

$$R(\alpha) = \{\alpha\}$$

$$R(p \cdot q) = \{xy \mid x \in R(p), y \in R(q)\}$$

$$R(\mathsf{dup}) = \{\mathsf{dup}\}$$

$$R(p^*) = \bigcup_{n \ge 0} R(p^n)$$

I is a guarded string

NetKAT language model consists of regular subsets of a restricted class of guarded strings I.

Language model: $G(p) \subseteq I = A \cdot (\Pi \cdot dup)^* \cdot \Pi$

$$G(\pi) = \{ \alpha \cdot \pi \mid \alpha \in A \}$$

$$G(p+q) = G(p) \cup G(q)$$

$$G(\alpha) = \{ \alpha \cdot \pi_{\alpha} \}$$

$$G(p \cdot q) = G(p) \diamond G(q)$$

$$G(\mathsf{dup}) = \{ \alpha \cdot \pi_{\alpha} \cdot \mathsf{dup} \cdot \pi_{\alpha} \mid \alpha \in A \}$$

$$G(p^*) = \bigcup_{n \ge 0} G(p^n)$$

Guarded concatenation

$$\alpha \cdot p \cdot \pi \diamond \beta \cdot q \cdot \pi' = \begin{cases} \alpha \cdot p \cdot q \cdot \pi' & \text{if } \beta = \alpha_{\pi} \\ \text{undefined} & \text{if } \beta \neq \alpha_{\pi} \end{cases}$$
$$A \diamond B = \{ p \diamond q \mid p \in A, \ q \in B \} \subseteq B$$

Definition 2 (Reachability). We say b is reachable from a if and only if there exists a trace

 $\langle pk_1, \cdots, pk_n \rangle \in rng(\llbracket dup \cdot (p \cdot t \cdot dup)^* \rrbracket)$ such that $\llbracket a \rrbracket \langle pk_n \rangle = \{\langle pk_n \rangle\}$ and $\llbracket b \rrbracket \langle pk_1 \rangle = \{\langle pk_1 \rangle\}.$

> Intuition: [a] can talk to [a] if there is a trace where packet's first hop is [a] last hop is [b]

Theorem 4 (Reachability Correctness). For predicates a and b, policy p, and topology t, $a \cdot dup \cdot (p \cdot t \cdot dup)^* \cdot b \not\equiv 0$, if and only if b is reachable from a.

Theorem 4 (Reachability Correctness). For predicates a and b, policy p, and topology t, $a \cdot dup \cdot (p \cdot t \cdot dup)^* \cdot b \not\equiv 0$, if and only if b is reachable from a.

Proof. We <u>translate</u> the NetKAT equation into the language model: $\begin{array}{l}
a \cdot \operatorname{dup} \cdot (p \cdot t \cdot \operatorname{dup})^* \cdot b \neq 0 \\
\Rightarrow \quad \exists \alpha, \pi_n, \cdots, \pi_1. \\
\alpha \cdot \pi_n \cdot \operatorname{dup} \cdots \operatorname{dup} \cdot \pi_1 \in G(a \cdot \operatorname{dup} \cdot (p \cdot t \cdot \operatorname{dup})^* \cdot b)
\end{array}$

Theorem 4 (Reachability Correctness). For predicates a and b, policy p, and topology t, $a \cdot dup \cdot (p \cdot t \cdot dup)^* \cdot b \not\equiv 0$, if and only if b is reachable from a.

Proof. We translate the NetKAT equation into the language model:

 $a \cdot \mathsf{dup} \cdot (p \cdot t \cdot \mathsf{dup})^* \cdot b \not\equiv \mathbf{0}$

 $\Rightarrow \exists \alpha, \pi_n, \cdots, \pi_1.$ $\alpha \cdot \pi_n \cdot \mathsf{dup} \cdots \mathsf{dup} \cdot \pi_1 \in G(a \cdot \mathsf{dup} \cdot (p \cdot t \cdot \mathsf{dup})^* \cdot b)$

Also translate each term in the semantic definition of reachability into the language model

$$\begin{array}{l} \exists pk_1, \cdots, pk_n. \\ \langle pk_1, \cdots, pk_n \rangle \in \mathsf{rng}(\,\llbracket \mathsf{dup} \cdot (p \cdot t \cdot \mathsf{dup})^* \rrbracket), \\ \llbracket a \rrbracket \, \langle pk_n \rangle = \{ \langle pk_n \rangle \} \text{ and } \\ \llbracket b \rrbracket \, \langle pk_1 \rangle = \{ \langle pk_1 \rangle \} \end{array}$$

Proof. We translate the NetKAT equation into the language model:

 $\begin{array}{c} a \cdot \mathsf{dup} \cdot (p \cdot t \cdot \mathsf{dup})^* \cdot b \not\equiv 0 \\ \Rightarrow & \exists \alpha, \pi_n, \cdots, \pi_1. \\ \hline & \alpha \cdot \pi_n \cdot \mathsf{dup} \cdots \mathsf{dup} \cdot \pi_1 \in G(a \cdot \mathsf{dup} \cdot (p \cdot t \cdot \mathsf{dup})^* \cdot b) \end{array}$

Definition 2 (Reachability). We say b is reachable from a if and only if there exists a trace

$$\langle pk_1, \cdots, pk_n \rangle \in \operatorname{rng}(\llbracket \operatorname{dup} \cdot (p \cdot t \cdot \operatorname{dup})^* \rrbracket)$$
such that $\llbracket a \rrbracket \langle pk_n \rangle = \{ \langle pk_n \rangle \}$ and $\llbracket b \rrbracket \langle pk_1 \rangle = \{ \langle pk_1 \rangle \}.$ ⁷⁰

Also translate each term in the semantic definition of reachability into the language model

$$\begin{array}{l} \exists pk_1, \cdots, pk_n. \\ \langle pk_1, \cdots, pk_n \rangle \in \operatorname{rng}(\llbracket \operatorname{dup} \cdot (p \cdot t \cdot \operatorname{dup})^* \rrbracket), \\ \llbracket a \rrbracket \langle pk_n \rangle = \{ \langle pk_n \rangle \} \text{ and} \\ \llbracket b \rrbracket \langle pk_1 \rangle = \{ \langle pk_1 \rangle \} \\ \Rightarrow \quad \exists \pi'_1, \cdots, \pi'_m. \\ \alpha_{\pi'_m} \cdot \pi'_m \cdot \operatorname{dup} \cdots \operatorname{dup} \cdot \pi'_1 \in G(\operatorname{dup} \cdot (p \cdot t \cdot \operatorname{dup})^*), \\ \alpha_{\pi'_m} \cdot \pi'_m \in G(a) \text{ and} \\ \alpha_{\pi'_1} \cdot \pi'_1 \in G(b) \end{array}$$

Proof. We translate the NetKAT equation into the language model:

 $\begin{array}{c} a \cdot \operatorname{dup} \cdot (p \cdot t \cdot \operatorname{dup})^* \cdot b \not\equiv \mathbf{0} \\ \Rightarrow \quad \exists \alpha, \pi_n, \cdots, \pi_1. \\ \hline \alpha \cdot \pi_n \cdot \operatorname{dup} \cdots \operatorname{dup} \cdot \pi_1 \in G(a \cdot \operatorname{dup} \cdot (p \cdot t \cdot \operatorname{dup})^* \cdot b) \end{array}$

Definition 2 (Reachability). We say b is reachable from a if and only if there exists a trace

$$\langle pk_1, \cdots, pk_n \rangle \in \operatorname{rng}(\llbracket \operatorname{dup} \cdot (p \cdot t \cdot \operatorname{dup})^* \rrbracket)$$
such that $\llbracket a \rrbracket \langle pk_n \rangle = \{ \langle pk_n \rangle \}$ and $\llbracket b \rrbracket \langle pk_1 \rangle = \{ \langle pk_1 \rangle \}.$ ⁷¹

$$\begin{array}{l} \exists pk_1, \cdots, pk_n, \\ \langle pk_1, \cdots, pk_n \rangle \in \operatorname{rng}(\llbracket \operatorname{dup} \cdot (p \cdot t \cdot \operatorname{dup})^* \rrbracket), \\ \llbracket a \rrbracket \langle pk_n \rangle = \{\langle pk_n \rangle\} \text{ and } \\ \llbracket b \rrbracket \langle pk_1 \rangle = \{\langle pk_1 \rangle\} \\ \Rightarrow \quad \exists \pi'_1, \cdots, \pi'_m, \\ \alpha_{\pi'_m} \cdot \pi'_m \cdot \operatorname{dup} \cdots \operatorname{dup} \cdot \pi'_1 \in G(\operatorname{dup} \cdot (p \cdot t \cdot \operatorname{dup})^*), \\ \alpha_{\pi'_m} \cdot \pi'_m \in G(a) \text{ and } \\ \alpha_{\pi'_1} \cdot \pi'_1 \in G(b) \end{array}$$
 To prove soundness we let $\alpha = \alpha_{\pi_n}$ and $m = n$ to show that if $\alpha \cdot \pi_n \cdot \operatorname{dup} \cdots \operatorname{dup} \cdot \pi_1 \in G(a \cdot \operatorname{dup} \cdot (p \cdot t \cdot \operatorname{dup})^* \cdot b) \\ \text{then,} \\ \alpha_{\pi'_m} \cdot \pi'_m \cdot \operatorname{dup} \cdots \operatorname{dup} \cdot \pi'_1 \in G(\operatorname{dup} \cdot (p \cdot t \cdot \operatorname{dup})^*), \longrightarrow \alpha_{\pi'_m} \cdot \pi'_m \cdot \operatorname{dup} \cdots \operatorname{dup} \cdot \pi'_1 \in G(\operatorname{dup} \cdot (p \cdot t \cdot \operatorname{dup})^*) \\ \end{array}$

by a similar argument.

Proof. We translate the NetKAT equation into the language model:

 $a \cdot \mathsf{dup} \cdot (p \cdot t \cdot \mathsf{dup})^* \cdot b \not\equiv 0$

 $\Rightarrow \exists \alpha, \pi_n, \cdots, \pi_1.$

 $\alpha \cdot \pi_n \cdot \mathsf{dup} \cdots \mathsf{dup} \cdot \pi_1 \in \overline{G(a \cdot \mathsf{dup} \cdot (p \cdot t \cdot \mathsf{dup})^* \cdot b)}$

To prove correctness

- Define reachability: show semantic notion
- Translate
 - o denotational semantics of reachability, and
 - below equation into the language model
- Show NetKAT equation is equivalent to the reachability definition

$$a \cdot \mathsf{dup} \cdot (p \cdot t \cdot \mathsf{dup})^* \cdot b \not\equiv \mathbf{0}$$

Definition 2 (Reachability). We say b is reachable from a if and only if there exists a trace

$$\langle pk_1, \cdots, pk_n \rangle \in rng(\llbracket dup \cdot (p \cdot t \cdot dup)^* \rrbracket)$$

such that $\llbracket a \rrbracket \langle pk_n \rangle = \{\langle pk_n \rangle\}$ and $\llbracket b \rrbracket \langle pk_1 \rangle = \{\langle pk_1 \rangle\}.$

Takeaways

- Showed how Kleene algebra with tests (KAT) applies to networks
- Formally described NetKAT syntax, semantics, and axioms
- Applied equational theory in NetKAT
- Gave examples of NetKAT equation to
 - drop SSH traffic between two nodes
 - check reachability between two nodes
- Formally showed correctness of the reachability equation

References

- NetKAT: semantic foundations for networks, POPL'14 (Symposium on Principles of Programming Languages), <u>http://dl.acm.org/citation.cfm?id=2535862</u>
- 2. NetKAT: Semantic Foundations for Networks, Technical Report, 2013, https://ecommons.cornell.edu/handle/1813/34445
- 3. Dexter Kozen. Kleene algebra with tests. Transactions on Programming Languages and Systems, 19(3):427–443, May 1997.